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Abstract. This is a review of Regge theory that is intended both as an introduc- 
tion to its main features and as a survey of its relation to experimental results on the 
strong interactions of elementary particles. It includes a survey of the experimental 
and theoretical background that is required for an understanding of Regge theory. 
The  central part of the review describes the basic ideas of Regge theory and the 
application of Regge pole models to high-energy collisions of elementary particles. 
The review concludes with a brief account of extensions of Regge theory that give 
the Veneziano representation and that give some features of many-particle pro- 
duction in high-energy collisions. 

1. Introduction 
1.1. Preliminary remarks 

Regge theory is concerned with the classification of elementary particles and 
resonances, and with the collisions of elementary particles at high energies. In  its 
most general form it is not a predictive theory but it provides an important frame- 
work which gives a basis for a systematic study of the strong interactions of 
elementary particles. Within this framework Regge models can be constructed and 
tested by their predictions about high-energy reactions, 

The  objectives of this review are to give an introduction to Regge theory and to 
describe its relation to experimental results. The  plan of the review commences 
with some definitions and introduces some of the language of high-energy physics. 
Next follows a survey of experimental results so as to illustrate what Regge theory 
is trying to explain. A brief account of some basic theoretical ideas is then followed 
by a section describing the main features of Regge theory and a section describing 
some of its applications and their relation to experiment. The  final section of this 
review indicates some extensions from Regge theory which include a discussion of 
the idea of duality and the Veneziano representation. 

In  order to introduce the concepts and language of Regge theory as simply as 
possible I will concentrate mainly on the particular models in the theory that are 
based on Regge poles. A Regge pole is a singularity of the form l/(J- a )  in a suit- 
ably chosen scattering amplitude, where J denotes angular momentum and a is a 
function of the energy of the colliding particles. This will be explained more 
precisely in $0 3 and 4 of this article. 

Regge models are phenomenological in character ; they are developed and 
modified under the stimulus of experimental results. Section 2 of this review will 
therefore consist of a survey of some of the characteristic features of experiments on 
collisions that Regge models seek to explain or correlate or predict. Section 3 will 
contain a survey of the main features of relativistic collision theory or S matrix 
theory that form an essential background to the development of Regge models. 

Regge theory is based on the use of complex angular momentum combined with 
relativistic collision theory. Originally, Regge (1959, 1960) developed the use of 
complex angular momentum to study nonrelativistic scattering by a Yukawa 
potential. The  subsequent extension of Regge theory to give models for a relativistic 
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theory of collisions of strongly interacting elementary particles was initially due to 
Blankenbecler and Goldberger (1962), Chew and Frautschi (1961, 1962) and 
Gribov (1962a,b). 

The use of complex angular momentum will be introduced in $ 4  where we will 
describe the basic ideas of Regge theory. Further aspects of the theory will be 
developed in $ 5 ,  which is primarily concerned with illustrating the ways in which it 
can be compared with experimental results. Since the main objectives in this 
review are to describe the concepts and ideas of Regge theory rather than the 
technical details, we will avoid the complications due to the fermion spin formalism 
as far as possible. The reader who requires more technical details will find many of 
them discussed in an extensive review of Regge theory by Collins (1971). 

References will be given in the text both to review articles and to original papers, 
but no attempt has been made to include all important original papers on Regge 
theory. Many of these are listed by Svensson (1967 unpublished), Collins and 
Squires (1968), Collins (1971) and Jackson (1969). The reader who seeks a wider 
introduction to the strong interactions of elementary particles than is given in this 
review may refer to elementary accounts given by Chew et aZ(1964) and Eden (1970)) 
or to the more advanced accounts in the books by Martin and Spearman (1970), 
Pilkuhn (1968), Eden (1967) or Barger and Cline (1969). 

1.2. Units 
The conventional units in high energy physics take 

% = c = l  (1.1) 
where 7i denotes Planck’s constant h divided by 2n, and c denotes the velocity of 
light. 

Energy and mass are measured in MeV or GeV, but momentum is often 
expressed in units of MeVlc, purely to distinguish it from an energy. 

Cross sections are measured in millibarns, 

1 mb = 10-31 m2 = 0.1 fm2 (1.2) 
where one femtometre (10-I5 m) is commonly known as a fermi. 

M (or m,, m,; m, 1: m,). Their approximate values are 
The  pion mass is written p or m,, and the nucleon mass (neutron or proton) 

p N 140 MeV iV= 940 MeV. (1.3) 

K = 6.582 x MeVs c -3  x lo8 ms-l. (1.4) 

1 GeV N 5 fm-1 1 GeV-I1: 0.2 fm (1.5) 

(1.6) 

1 MeV-l- 7 x s. (1.7) 

(1.8) 

Conversion factors can be worked out using 

This gives, for example, 

1 GeV-2 1: 0.389 mb 1: 0.4 mb 

The pion mass p satisfies 50p2= 1 GeV2 and 

p-I1: 1/2 fm p-2 N 50 GeV-2 1: 40 mb. 
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1.3. Quantum numbers 
Certain quantities are conserved absolutely in interactions of elementary 

particles, for example total energy and momentum, and total charge. Other 
quantities are almost conserved, thus total strangeness is conserved in strong inter- 
actions (which are our main concern in this review) and electromagnetic interactions, 
but total strangeness is not conserved in weak interactions. 

The  properties of elementary particles are described in an elementary manner 
in several textbooks or reviews and they will not be discussed here in any detail 
(see Chew et al 1964, Eden 1970, or the textbooks listed at the end of 8 1.1). How- 
ever, it may be useful to list briefly some of the most important properties and some 
(nearly) conserved quantities that can be used to label particles. These include: 

(i) Rest mass: usually measured in MeV or GeV. 
(ii) Lifetime: for example protons and electrons are stable, the n+,x-  mesons 

have a half-life of order s, the no about 10-l6 s. Resonances such as the 
A(1236), which is a resonance in a pion-nucleon collision, have a much shorter 
lifetime of order s. 

(iii) Baryon number: mesons have baryon number B = 0;  protons, neutrons and 
hyperons have B = 1, antiprotons, etc have B = - 1. Total baryon number is 
absolutely conserved. 

(iv) Charge Q :  charges on observed elementary particles and resonances range 
from -e  to + Ze, where - e is the charge on an electron. Total charge is absolutely 
conserved. 

(v) Spin J: a fermion (eg proton or neutron) has half-odd-integer spin (in units 
of h/277), a boson has integer or zero spin (eg pions have J = 0, the p meson has 
J = 1). The  A(1236) resonance has spin 3. 

(vi) Isospin I :  this is a vector operator, algebraically analogous to angular 
momentum. Its third component I3 is related to charge, for example in the case of 
neutron or proton 

Q = ( I 3 + $ ) .  
(vii) Strangeness S: a strangeness quantum number is associated with each 

particle; x mesons and nucleons have S = 0, whereas A and C baryons have S = - 1, 
and K+ mesons have S = + 1 but K- mesons have S = - 1. With the rule of 
strangeness conservation, one sees that the reaction 

n- + p -+ C-+ Kf 
has total S = 0 on both sides so it is an allowed reaction. However, the reaction 

n-+ p -+ C+ + K- 
is not allowed since it has total S = O on the left-hand side but total S = - 2 on the 
right-hand side. 

(viii) Parity P :  the absorption of a x meson by a deuteron causes a change in the 
reflectionxharacter of the space wavefunction from even to odd. One deduces that 
the pion has odd (or negative) parity. Parity is conserved in strong and electro- 
magnetic interactions. 

1.4. Two-body reactions 
In  this review we will be primarily concerned with two-body reactions. The  

relative simplicity of two-body systems permits more precision in the comparison 
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of Regge models with experiment than is feasible for multiparticle production, 
although Regge models can also be developed for the latter processes. Examples of 
two-body reactions are 

x- p -+ ~ i -  p 

x- p -+no n 

x- p -+ KO ho 

elastic scattering 

charge exchange scattering 

associated production (a strangeness exchange and 
charge exchange reaction). 

In  the second reaction (pion-nucleon charge exchange), the xo is not observed 
directly but may be observed from its decay 

n o  --f 2y 

with the photons observed, for example, by e+e- pair production. A similar 
situation occurs in the third reaction. 

The following reactions are often called quasi-two-body reactions, since one or 
both of the final particles decays by strong interactions to the particles that are 
actually observed, 

n- p -+ pO(765) n 
I 

(1.9) 

I+ x+ Ti- 

I I 
~i-p-f  pO(765) AO(1236) (1.10) 

I+ XL 77- I+ z- p. 

In  reaction (1.9) the pa meson is distinguished by selecting those z+n- pairs whose 
energy in their own centre of mass system (CM system), E(x+  n-), is near to 765 MeV. 
I t  is found that the production reaction 

x- p -+ x+x-  n (1.11) 
has a resonance when E ( x - x - )  = 765 MeV whose width is about 125 MeV. This 
corresponds to a lifetime of order 5 x s, which is comparable with the duration 
of the collision process. The  nonresonant background of x - x +  production is not 
negligible but it can be subtracted from the observed results leaving results that 
correspond only to the quasi-two-body reaction (1.9). Similarly the reaction (1.10) 
producing the pa and Ao resonances can be separated (approximately) from the 
production process in which the final particles are not in resonance states. 

1.5. Resonances and particles 
The AO(1236) resonance observed in reaction (1.10) can also be observed as a 

resonance in x-p elastic scattering (see 8 2). Its spin properties can be observed by 
studying the angular dependence of elastic scattering at the resonance energy of 
1236 MeV in the CM system and it is found that J = $ and I = 1. 

The  spin properties of the po meson can be determined by studying the angular 
distribution of the decay products x+x- at an energy of 765 MeV in their CM 
system, and it is found that it has J = 1. It is found that a resonance also occurs in 
the x+no system and the x-zo system at 765 MeV, but not in x+x+ or x - x - .  It 
follows that the p meson has three charge states (-,  0, +) so it has isospin 1. 

A full list of observed particles and resonances is published periodically by 
particle data groups (see, for example, Barash-Schmidt et al 1971). In  this review 
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it will be assumed that the reader is aware of the nearly stable particles, particularly 
pions (n+, no, n-), kaons (K-, KO, KO, K+), q0(550), nucleons (n, p), hyperons 
(no, E-, CO, C+, So, E-, Q-). However, when their properties are particularly relevant 
to the discussion, these will be stated in the context. The same will be done for the 

Table 1. Particles and resonances (masses in MeV) taken from 
Barash-Schmidt et a1 (1971) 

(a)  Stable or nearly stable padcles  
Y(0) ve, V d O )  e(0.5) ~ ( 1 0 5 )  

x*( 1 40) ~(938.3)  
xO(13.5) n(939.6) Eo(l 315) 
K+(494) h(l116) E-(1321) 
KO(498) Cf(l189) R-(1672) 
r(549) Co(l 193) 

C-(1197) 

(b) Mesons and meson resonances 
x(140) Y(1019) (2d1650) 
K(494) -iji(1070) FXU660) 
r(549) A1 (1070) F(1710) 

L(1770) 
K(892) B(1235) S(1930) 
Y$ (or E) (700 to 1000) f (1 260) U(2375) 
P(76.5) D( 1285) 
~ ( 7 8 4 )  A2( 13 10) 

K(1420) 
~‘ (958)  E(1422) 
6(962) f ‘( 1 5 14) 
XN(975) i~/p(1540) 
XN( 101 6) TA( 1640) 

(c) Baryons and baryon Yesonances 
~(938.3)  A( 1 23 6) A(1116) C(1190) 
n(939.6) A(  1650) A(1405) C(1385) 
”(1 520) A(1670) A’(1520) C(1670) 
”(1 535) A(1890) A‘(1670) C(1750) 
N(1670) A( 19 10) A”(1090) C(1765) 
N(1688) A(1950) A(1815) C (1 95 0) 
N”( 1700) A (2420) h(1830) C (203 0) 
N”( 1780) A(2850) 42100)  C( 2250) 
N(1860) A( 3 23 0) A( 23 5 0) C(2455) 
N(2190) - - C(2620) 

N(2650) E(1314) R-(1672) 
N(3030) E(1530) 

E(1820) 
E(1940) 

N(2220) - - 

Antiparticles are not listed and it should be noted 
that many of the particles have several different charge 
states. 

resonances that are used to illustrate experimental features or properties of Regge 
theory. In  particular we will find the relation between the masses and angular 
momenta of certain sequences of resonances to be of special importance. A list of 
elementary particles and resonances that have been observed is shown in table 1. 
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Except for the nearly stable mesons, all the particles listed in table l ( b )  have to 
be observed as resonances in final-state interactions in production processes as 
mentioned above in 8 1.4. Many of the baryon resonances can also be observed in 
this way but most of those shown in table l(c) have been confirmed by phase-shift 
analysis of two-body elastic scattering of pions or kaons by nucleons. 

A review of the experimental and theoretical techniques in bubble chamber 
physics which have led to the discovery of many of these resonances is given by 
Kalmus (1972), who also outlines the basic properties of some of these resonances. 
We note here only that in table l(c) p, n, N, N’, N” and A have strangeness S = 0, 
whereas A, A’, A“ and the C sequence has S = - 1, the E sequence has S = - 2, and 
for Q- the strangeness S = - 3. These and other quantum numbers of particles 
will be noted in the context of our later discussion whenever they are of significance 
to the reasoning. 

( a )  ( 6 )  

Figure 1. (a) Momenta in the laboratory system for a pion incident on a nucleon target. 
(b)  Momenta in the CM system for a pion-nucleon collision. 

1.6. Kinematics f o r  T N  collisions 

experimental survey of 3 2. More detailed kinematics will be considered in 8 3. 

the metric giving 

Thus for a particle of mass m 

Pion-nucleon kinematics will be required for illustrative purposes in the 

An energy-momentum four-vector will be denoted p (or p,, p )  and we shall use 

p 2  = p,2 - p , .  (1.12) 

p2 = p02-p2 = m . 2  p ,  = (m2+p2)’h. (1.13) 
We consider pion-nucleon elastic scattering 

x1 + N, -+ E ,  + N,. (1.14) 

The corresponding four-vectors will be written q,, q2 for the incoming and outgoing 
pions, and p,, p ,  for the nucleons. Energy and momentum must be conserved so 

41+Pl = Q2+P2.  (1.15) 

The incoming and outgoing momenta are illustrated in figure l ( a )  for the laboratory 
system in which the nucleon N, is at rest, and in figure l ( b )  for the CM system. 

where k ,  k’ denote 
the initial and final momenta in the CM system and the total energy W is 

($ + q v z  + (&p + p)% = w = s‘h. (1.16) 

This also defines the important variable s, which is the square of the total energy 
in the CM system. 

In  the xN CM system, conservation of energy gives k2 = 
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The scattering angle 0 in the CM system is related to the three-momenta k 
and k’ by 

k.k’ = I kl I k’l COS 0 

= k2 COS 8. (1.17) 
The  momentum transfer from nucleon to pion in the collision in the CM system is 
( k ’ -  k ) .  The important variable t is defined to be minus the momentum transfer 
squared, 

(1.18) 

The  importance of the variables s and t arises because they are relativistic 
invariants. For an arbitrary frame of coordinates, they are given in terms of the 
four-vectors by the equations, 

s = (41+Pd2 = ( 4 2 + P 2 Y  (1 .19~)  

t = (41 - 4 J 2  = ( P I  - P2I2. ( 1.1 9b) 
Furthermore, if we neglect the spin of the nucleon, the whole result of the scattering 
process can be expressed in terms of s and t. That is to say, the scattering ampli- 
tude, F say, is a function of s and t only, F(s,  t ) .  The same is true of the differential 
cross section. 

t = - (k’ - k)2 = - 2k2( 1 - cos e). 

Using (1.16) we see that 

s = {(W + k2)l:Z + (p2 + K‘) l :2 }2  

so the momentum k in the CM system satisfies 

(1.20) 

where we have used k to denote I k [ .  

by using the invariance of s and t. This gives 
We can obtain the energy and momentum of the pion in the laboratory system 

s = M 2  + p2 + 2MEz(lab) 

At high energies this becomes 

2 M I  P l ab  1 I Plab I (GeV2) 
since for a nucleon M E  1 GeV. 

(1.21) 

(1.22) 

1.7. The physical scattering region 
For the pion-nucleon scattering illustrated in figures l(a) and (b) to occur as an 

observable physical process, it is clearly necessary that the angles of scattering are 
real and the four-vectors are real Lorentz vectors that satisfy the appropriate mass 
shell condition analogous to equation (1.13). These conditions determine a region 
of the s, t plane (also called the ‘Mandelstam plane’) in which process (1.14) is 
physically allowed. This ‘physical region’ of the s, t plane can be found from 
equation (1.18) using - 1 6 cos 8 6 1 and (1.20). Thus, 

and 
(1.23) 
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or, using (1.20), 
4p2 M 2 -  (s- p2- M 2 ) 2  < st < 0. (1.24) 

The physical region, whose boundaries are defined by equations (1.23) and (1.24), 
is illustrated in figure 2. 

Figure 2. The physical region of the s, t plane for xN scattering. 

1.8. Cross sections and collision amplitudes 
Differential cross sections are measured in the laboratory system, The  pro- 

cedure is illustrated in figure 3(a) in which the counter records the number of pions 
elastically scattered into a solid angle dQ(1ab) per unit time. The  elastic differential 
cross section for scattering of pions on protons is defined by 

do(e1astic) - N(out through counter) 
dQ(1ab) N(incoming per proton) (1.25), - 

Incident pion 
beam 

1 1  - - - - -  
E?:$? 1 

protons 

Incident Dions 

Recoil / protons 

Target protons 

(0) ( b )  
Figure 3. (a) Schematic diagram for defining a differential cross section in the laboratory 

system. (b)  Scattering into solid angle dR in the CM system. 

where the numerator denotes the number of elastically scattered pions per unit 
time crossing the area r2dQ(lab) of the counter. The  denominator on the right- 
hand side of (1.25) denotes the number of pions in the incident beam per unit area 
per unit time divided by the number of protons per unit area in the hydrogen 
target. The  differential cross section (1.25) clearly has the dimensions of an area. 

Using the kinematics discussed earlier in $1.6, one can express the laboratory 
scattering angle B(1ab) via cos 8(lab) in terms of the invariants s and t .  Then, using 
the relation dQ(1ab) = d+(lab) d(cos @(lab)), one can express (1.25) in terms of 
(daldt) multiplied by certain kinematic factors. 

The  differential cross section in the pion-proton CM system can be similarly 
defined using the CM system scattering angle 8 and the CM system azimuthal angle 4 
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(also equal to $(lab)). The  definition is illustrated in figure 3(b). We can write 

dR = d(cos 0) d+ (1.26) 

and if we either ignore proton spin, or average over it, there will be no dependence 
of the differential cross section on +. Hence 

da  do(e1astic) 
7T-= 

da  
J d + m  = 2 d R -  d(cos0) ' 

From equation (1.18) we obtain 

which gives 
dt = 2k2 d(cos 8) 

da(e1astic) da(e1astic) 
dt = (GI dQ 

(1.27) 

(1.28) 

(1.29) 

where the right-hand side is defined in the CM system. The  left-hand side is an 
invariant and, as noted above, it may also be expressed in terms of the differential 
cross section (1.25) defined in the laboratory system. 

If we neglect nucleon spin, the invariant differential cross section (1.29) may be 
expressed in terms of a single invariant scattering amplitude F(s, t), where s and t 
are defined by ( 1 . 1 9 ~  and b)  

do(e1astic) 1 
= -1 F(s,  t) 12. 

dt 64.rrsk2 (1.30) 

This relation uses the conventional relativistic normalization for F(s,  t), but the 
reader should note that some authors choose different normalizations. If proton 
spin is taken into account there are two invariant scattering amplitudes for elastic 
pion-proton scattering. 

If the differential cross section (1.30) is integrated over 0 from 0 to T we obtain 
the integrated elastic cross section, 

a(e1astic) = j .0 d t  d n ( e r i c )  
t l ( S )  

(1.31) 

where t ,  denotes the lower limit for t at fixed s in equation (1.24) (see also figure 2). 

a + b + c + d  (1.32) 

are defined in a manner similar to that illustrated in figure 3(a) except that a second 
counter (or several counters) is required to identify the final particles c and d. The  
reaction differential cross section is given (neglecting possible spins of abcd) by 

Differential cross sections for two-body reactions 

(1.33) 

where K(s) denotes a kinematic factor. By integrating over physical values of t at 
fixed energy (fixed s), one obtains o(ab -t cd). 

Total cross sections are equal to the sum of all allowed elastic and reaction 
cross sections including those involving many-body production, 

(1.34) aT(x+ p) a(n+ p, total) = 2 U(X+ p +anything). 
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Incident pion Proton n=zz:l, 1 1  
beam target cl c 

c3 c 

I n  practice aT(x+ p) is obtained experimentally by measuring the number of 
particles removed from the incident pion beam. This is achieved by extrapolating 
to zero angle as illustrated in figure 4(a). The counters Ci subtend an angle !2, at 
the target. They detect the passage of charged particles. From the flux through 
these counters, and from the flux in the incident beam, one can obtain the number 

Coulomb dominant 

Nuclear. (strong) 
dominant 

U Q) 

uT(x+ p, s) = lim a(Q) (1.36) 
62-0 

where s denotes the invariant energy variable. 

theorem. This gives, for example, 
Total cross sections are related to elastic scattering amplitudes by the optical 

(1.37) 

where Im F(s,  0) denotes the imaginary part of the I;+ p forward elastic scattering 
amplitude. A detailed review of total cross sections has been given recently by 
Giacomelli (1970). 

The  central theoretical problem in collision processes is to find a method for 
evaluating the scattering amplitudes F(s,  t )  and other collision amplitudes. We will 
see later in this review that Regge theory provides a framework within which 
attempts can be made via Regge models to calculate F(s,  t )  and other amplitudes at  
high energies. However, we will proceed now with a description of the experiments 
that one is trying to explain. 

2. Experimental survey 
The principal types of experiments performed at high energies will be surveyed 

in this section. For the applicability of Regge models, high energies correspond to 
laboratory energies greater than about 5 GeV, but in some cases it is useful to  
consider energies below this limit. Observed resonances in two-body systems occur 
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below 5 GeV but we will not discuss the detailed evidence for these resonances, 
since it will be considered in the review by Kalmus (1972) in this series. We will, 
however, describe results of quasi-two-body reactions of the type discussed in 
3 1.4 in which resonances are regarded as particles in the final state. 

In  describing experimental data I will frequently make two simplifications to 
aid interpretation, the first being to avoid exhibiting all experimental points 
although typical experimental errors will be illustrated. The second simplification 
is the use of smooth curves drawn by eye through the experimental points; on 
occasions only these smooth curves will be given and the actual experimental points 
will be omitted. 

IO 50 100 
pclab) (GeV/c) 

I I I I 1 

5 10 20 50 100 

p ( l a b )  (GeVic) 

Figure 5 ,  Total cross sections as Figure 6 .  A a  = a~(ii ,  p) - u.r(a, p), where ii, a denote 
a function of laboratory p, p or K-, K+ or x- ,  nf, respectively, plotted 
momentum from 5 to as a function of laboratory momentum (note 
65 GeV/c (from Denisov that both scales are logarithmic) (from Denisov 
et  al 1971). et al 1971). 

2.1. Total cross sections 
Total cross sections have been accurately measured for energies up to 70 GeV 

which is the highest available energy at the present time and is given by the proton 
accelerator at Serpukhov in the USSR. The data (Denisov et  a1 1971) for o(tota1) 
for charged particles is shown in figure 5 ,  for an energy range 5 to 70 GeV. The  
statistical errors for oT(pp) are F 0.25y0, and the systematic scale errors are f 0.4%. 
For x -p  and K + p  the statistical errors are about 0.5% and the scale errors are 
similar. uT(K-p) and oT(K+p) are known with similar accuracy but oT(Pp) has 
statistical errors around 1 yo. 

The data shown in figure 5 indicate a smooth variation in oT for all processes 
above an energy of 5 GeV. Except for K f p ,  where oT shows a slight increase 
between 15 and 55  GeV, all the cross sections appear to be decreasing, possibly 
towards an asymptotically constant value. The exceptional behaviour of u T ( K ~  p) 
may be very significant in assessing the latter possibility. 

I t  was originally suggested on intuitive grounds by Pomeranchuk (1956, 1958) 
that total cross sections should tend to constant values at high energies and also 
that particle-target and antiparticle-target total cross sections should become 
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asymptotically equal. The  latter possibility is also given some support by the data 
in figure5. It may be seen that aT(j5p) decreases towards aT(pp) as the energy 
increases. The  convergence of particle-target and antiparticle-target total cross 
sections is also indicated by the results for x*p and for K*p. The  fact that aT(j5p) 
is larger than uT(pp) at lower energies may be qualitatively explained by the presence 
of a larger number of open channels for pp, (annihilation giving meson final states 
for example) than for pp. At high energies these extra open channels for j5p become 
relatively less important. It is also of interest to note that the pp system has many 
(mesonic) resonances observable at low energies whereas the pp system has none. 
Similar situations occur with x-p and x+p,  and with K-p and K+p.  The  former 
in each case have more open channels than the latter, and they have more resonances 
than the latter, 

The  differences between particle and antiparticle total cross sections are shown 
in figure 6, where 

Aa(xp) = uT(T-P) - CJT(X+ p) (2.1) 
and Aa(pp), Ao(Kp) have analogous definitions. The  parametrization indicated by 
figure 6 takes the form (Denisov et a1 1971) 

where 
Au = Ap-" (2.2) 

A(pp) = 56.8 f 5.3 mb 

A(Kp) = 19.2 i 1.3 mb 

A(xp) = 3.88 i 0.35 mb 

n(pp) = 0.61 k 0.03 

n(Kp) = 0.56 k 0.02 

n(xp) = 0.31 k 0.04. 

The  parametrization in equation (2.2) may be an oversimplification; Lindenbaum 
(1969) has noted that the data can be fitted in a way that is more consistent with 
dispersion relations for xp  scattering by 

AU(TGP) N 20p-o'6 - 25p-"O. (2.3 1 
Then for large values of p ,  the graph for xp in figure 6 would become parallel to the 
other two graphs. The latter result can also be established on a fundamental 
theoretical basis (Roy 1972, see also 32.5). 

Cross sections involving neutrons have also been measured by collisions on a 
deuterium target. There is a little theoretical uncertainty in separating the con- 
tributions to uT from protons but in practice the Glauber method is expected to give 
a good approximation (Glauber 1955, Franco and Glauber 1966). The resulting 
total cross sections on neutrons are similar to those shown in figure 5 ,  but with 
somewhat larger errors. 

Experiments on total cross sections have recently been reviewed by Giacomelli 
( 1970). 

2.2. Phases of forward amplitudes 
Using the optical theorem, measurements of uT give the imaginary part of the 

corresponding elastic forward amplitude, as shown in equation (1.37). The  phase 
of F(s ,  0), and hence the real part Re F(s,  0), may be found from a coulomb inter- 
ference experiment. This measures the differential cross section duldt in the region 
t -  - 0.002 GeV2 where the strong nuclear interactions are comparable with 
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coulomb effects. 

-=..- 1 - 8nS”2 G(t) exp (23)  + Re F(s,  t )  + i Im F(s,  t) do 
dt 64nsk2 I tl 

where 6 denotes the relative coulomb nuclear phase shift (Bethe 1958, West and 
Yennie 1968) and G(t) is the product of the pion-nucleon form factors. Using 
measurements of do/dt in the small t region, Foley et aZ(l967) obtain values for the 
ratio 

Their results give at 20 GeV 

Both are slowly increasing in the range 8 to 22 GeV, that is, Re F(s,  0) appears to be 
tending towards zero. These results have been reviewed by Lindenbaum (1969). 

p(n- p) II - 0-1 p(x+ p) 2: - 0.2. 

A(2420) I 
0.1 I IO 

p (lab) (GeV/c) 

Figure 7. The integrated elastic cross section oel(x+ p) as a function of laboratory momentum, 
both scales are logarithmic (from Giacomelli 1971 unpublished). 

2.3. Elastic cross sections (integrated) 
The integrated elastic cross section G,~(E+ p) is shown in figure 7. The  locations 

of several resonances are shown on the drawing for ael(x+p). T h d r  existence 
cannot be deduced from bumps in uel alone but requires a phase-shift analysis 
(see 3 3). 

I I 
5 IO 15 20 25 

p (lab) (GeV/cl 

x- p, n+ p, K - p  and KT p scattering (from Giacomelli 1971). 
Figure 8. Integrated elastic cross sections as functions of laboratory momentum for pp, pp, 
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At high energies, we see from figure 8 that ael becomes smooth both for x + p  
and for x-p. I t  is of interest to compare G~~ with uT. This is done in figure 9 which 
shows the ratio of ael to uT for p, p, K+, K-, x-, x-, collisions on protons; it can be 
seen that the ratio X = G,,/u,, satisfies 

X@P) < X(PP> 
X ( x -  p) < X(d-  p) 

X(K-p)<X(K+p) .  

This result might have been expected because the left-hand pairs (pp, etc) have 

I 5 IO 15 20 25 

p (lab) (GeV/cl 

Figure 9. The ratio of a,l to UT as a function of laboratory momentum for pp, pp, z- p, zf p, 
K - p  and Kip  (from Giacomelli 1971). 

more inelastic channels available than have those on the right-hand side. How- 
ever, it is less expected that the difference X(pp)-X(pp) should increase as a 
function of the energy. 

2.4. DifSerential elastic cross sections 
A selection of the experimental results on elastic differential cross sections is 

shown on a logarithmic plot in figure 10. The  strong forward peak is typical of 
diffraction scattering in which the behaviour at t = 0 is dominated by ImF(s,  0). 
Thus, using equations (1.30) and (1.37), 

(2.7) 
( d u ( e p i c ) j  =-+- (GT)2 (ReF)2 

t=O 1 6 ~  64vsk2 * 

Thus if ReF(s, 0) is small compared with I m F ,  both sides of (2.7) will be approxi- 
mately constant as the energy s increases. Since the integrated elastic cross section 
is itself nearly constant, this demands a sharp peak in do/dt at t = 0. 

As we will see later, the simplest form of a Regge model indicates that for small 
t and large s ,  

da(e1astic) 
dt 

The  ‘effective’ experimental value of a(t) has been evaluated by Fox and Quigg 
(1970), who compare (2.8) at fixed t with the s dependence of doldt given by the 
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experimental results from which the curves in figure 10 have been drawn. Their 
results are shown in figure 11. 

The  value of a(t) near t = 0 is less than 1, for z*p  and pp scattering (possibly 
also K-p). This reflects the fact that uT(x*p) and ~,(ijp) in equation (2.7) are 
decreasing functions of energy in the range 5 to 20 GeV from which figure 10 was 

n -z 
b 

0 01 

0 I 2 0  I 2 0  1 2  
It1 (GeVlc? 

Figure IO. Differential cross sections measured in mb/(GeV/c)2 for scattering on protons of 
p, 6, x+, x- ,  K+, K-, as functions of 1 t I at various energies (from Allaby 1970). 

obtained (see figure 5 for uT as a function of energy). For x* p it has also been found 
that Re F(s, 0) decreases but its square gives only a few per cent contribution to the 
right-hand side of equation (2.7) near t = 0. On the other hand, a(t)  tends to 1 as 
t tends to zero for K + p  and for pp elastic scattering. This reflects the fact that uT 
is nearly constant for K + p  and pp collisions as was seen in figure 5. 

Finally one should notice the dips in duldt shown in figure 10. The dip does 
not occur for pp or K+p ,  but is present in the other four cases. However, its 
relative size decreases as the energy increases. 

2.5. Exchange CYOSS sections 
The integrated charge-exchange cross section for the process 

x- p -+ no n (2.9) 
is shown in figure 12 on a log-log plot. Its linear form indicates that in the range 
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5 to 50 GeVlc 

It will be recalled that p(1ab) is proportional to s at high energies. 
cr,,(~-p+7~On) ~A(p(lab))-1*~’, 

0 

0 1.0 

-0.5 O L  

0 1.0 

lf?!l 0 0 1.0 

1011 

(2.10) 

l t l  ( G e V / c I 2  
Figure 11. The effective power of s, a(t)  in equation (2.8) obtained by comparison with 

experiments done at several different energies (Fox and Quigg 1970). 

From the optical theorem and using isospin invariance ImFe,(s, 0)/(2ks”z) is 
proportional to Acr = aT(n-p)-aT(x+p). Thus, if ImF,, and ReFe, were of 
similar magnitude at t = 0, one would expect the negative power 1.17 in equation 
(2.10) to be approximately twice that of n(np) in equation (2.2). Since 2n(xp) = 
0.62 5 0.08, there is rather a large discrepancy, which indicates that the para- 
metrization in equations (2.2) and (2.10) is not very good. 

::‘ 
40 

I 

I I I  J 
5 10 20 40 60 

p (lab) (GeV/c) 
Figure 12. The integrated charge-exchange cross section for x-  p i. no n as a function of 

laboratory momentum (Giacomelli 1970). 
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Further evidence of complexity in the charge-exchange process is provided by 
the differential cross sections shown in figure 13. There is a dip in the forward 
direction, which shows that the spin effects due to the proton and neutron play a 
significant role. Indeed there must be a large spin-flip term (which vanishes at 
t = 0) in order to explain the forward dip. 

The  pronounced dip in da,,/dt seen in figure 13 at I tl = 0.6 (GeV/c)2 remains 
present up to the highest energies. This is in contrast with the dips in elastic 
scattering (figure 10) which disappear as the energy increases. 

-t  (GeV/c)* 

Figure 13. Normalized differential cross sections for E -  p + n o n  (from Sonderegger et  aZ1966). 

Another example of an exchange cross section of exceptional importance is 
given by KO regeneration, namely 

KL + p --f KO, + p. (2.11) 

In  this reaction the long-lived component of KO, which decays primarily into three 
pions, is converted by the interaction to the short-lived component that decays 
primarily into two pions. Using isospin invariance the amplitude for the process 
(2.11) may be related to the difference of KO and Ro scattering. (See Eden 1971 for 
a discussion of this relation and its consequences.) 

2.6. Backward scattering 
For nf p scattering near to the backward direction in the CM system as shown in 

figure 14, it is found that there is a backward peak at 0 = T ,  and a dip analogous to 
that seen in figure 13. A similar structure is found in n-p charge-exchange differ- 
ential cross sections near 6’ = 7 ~ .  However, for n-p scattering, there is a peak at 
0 = T but no nearby dip is observed. The magnitude of all three differential cross 
sections at 0 = ‘TT decreases rapidly as a function of the energy approximately 
like r l * j .  
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2.7. Polarization and spin parameters 
Experiments to measure polarization in nucleon-nucleon and pion-nucleon 

scattering may be done either by using a polarized target or by measuring the final- 
state polarization through rescattering the proton. Other spin parameters require 
both the initial and final polarization to be measured. Polarization measurements 
play an important role both in determining the several scattering amplitudes that 
may be involved (two for xN, five for NN) and in determining the phases of the 
amplitudes. They are not easy experiments, and only recently have moderately 
accurate experiments become feasible. 

I I I I I 

2 -0.8 -0,4 0 

U IGeV/c)* 

Figure 14. Backward xp scattering at 6.9 (GeVlc) plotted as a function of exchange momentum 
transfer squared (U) (adapted from Baker et  al 1968). 

2.8. Large-angle scattering 
At a fixed angle of scattering, as the energy variable s becomes large so also does 

the momentum transfer variable 1 t I .  One would therefore expect the high-energy 
behaviour to be different in character at fixed angle (traditionally described as large 
angle) from the behaviour at fixed I t I. Experimental results for proton-proton 
elastic scattering are shown in figure .15 as functions of I t J  plotted for various fixed 
values of the energy ranging from p(1ab) = 3 GeV/c to p(1ab) = 19 GeV/c. The 
statistical errors are very little larger than the thickness of the curves in figure 15. 

2.9. Quasi-two-body reactions 
Just as we have previously distinguished elastic scattering and charge-exchange 

scattering, in the more general case of quasi-two-body reactions we distinguish two 
classes (i) quasi-elastic reactions or diffraction dissociation and (ii) exchange 
reactions. 

Diffraction dissociation is used to describe processes like 

p + p + p  + N'+(1688) (2.12) 

in which the final particles each have the same quantum number as the correspond- 
ing initial particles except for a possible change in spin and a corresponding change 
in parity. Thus the reaction (2.12) can take place with an interaction involving an 
exchange of vacuum quantum numbers carrying angular momentum only. 
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It is found that integrated diffraction dissociation cross sections remain approxi- 
mately constant as functions of the energy. Typically they are of the order of 1 mb, 
or a few per cent of elastic cross sections, Their differential cross sections have a 
forward peak structure similar in its general features to that discussed for elastic 
scattering. 

2 4  8 16 

It1 i G e V 2  1 

Figure 13. Differential cross sections for pp scattering at various energies 
(from Allaby et a1 1968). 

Exchange reactions include 

p + p + p +  N’t(1236) (2.13) 

x - +  p-f p-+p (2.14) 

r;-+p+ po+X’(1236). (2.15) 

These cannot proceed by exchange of vacuum quantum numbers. It is found that 
they have the characteristic feature of charge-exchange scattering including a rapid 
decrease as the energy increases. Their differential cross sections sometimes show a 
simple forward peak similar to those in figure 10 (but reducing in magnitude with 
increasing energy), and they sometimes show forward structure similar to that in 
figure 13. 

I n  quasi-two-body reactions, one or both of the final-state particles decays into 
two or more particles, and it is the latter that are actually observed experimentally. 
This means that the polarization is always measured. The corresponding density 
matrices provide additional tests for any theoretical model of the reactions. 

2.10. Photoproduction 
Photoprocesses have been studied experimentally for y ray energies up to 

16 GeV. The  total photoproduction cross section on protons becomes approximately 
constant at a value around 120 pb above 3 GeV photon energy, Below this energy 
it shows strong resonances related to those in the xN system. 
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h n 
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U 
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0.01 

Photoprocesses include the following typical reactions 

YP --f P O  P 
YP --f UP 
yp-+K+A yp+;c+n 

yp+x-A++(1236). 

YP -+ no P 

I -  

- 

- 

(2.16) 

(2 .17~)  
(2.17b) 
(2.17c) 

The angular distributions and spin correlations for these and other processes have 
been studied experimentally (see Lohrman 1969 for detailed references). The  
reaction (2.16) can proceed by exchange of vacuum quantum numbers, and it is 
therefore analogous to diffraction dissociation. All the reactions ( 2 . 1 7 ~ )  b, c )  
require non-zero quantum numbers to be exchanged. 

2.11 Multiparticle production 
The  experimental cross sections for multiparticle production in a bubble 

chamber are illustrated in figure 16, which shows the proportion of the total cross 

0 

0 0 '0 
0 

I I , L  I 

0 IO 20 30 
p (lab) (GeV/cl 

Figure 16. Cross sections for pp collisions defined by the number of (charged particles) prongs 
in the final state (from Smith e t  al 1970, see also Horn 1972). 

section in pp collisions ( ~ ~ - 4 0  mb) that is due to various numbers of charged 
particles being produced. It is evident, from the dominance of 4-prong cross 
sections (4 charged particles) over the remainder, that the mean number of produced 
charged particles in the final state will be in the region of 4 (allowing for the 
possibility of neutrals that are not observed directly and subtracting 2 to allow for 
the initial baryon pair). 

The  angular distributions of multiparticle production processes may be studied 
experimentally, and also theoretically by means of Regge models and other models. 
In  particular, the multiplicity and energy distribution of product particles have 
been extensively studied in a statistical model by Hagedorn and Ranft (1968). 
Regge theory of multiparticle production, which will be mentioned in a later 
section, has been recently reviewed by Jacob (1971) and other models have been 
reviewed by Van Hove (1971). 
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2.12. Inclusive reactions 
An inclusive reaction is one in which not all the particles in the final state are 

observed. The  simplest of these gives the total cross section, where none of the final 
particles is observed but all possible final states are included in the measurement. 
Then cr(tota1) will be a function of the energy only. 

Considerable attention is currently being given to inclusive reactions in which 
just one final state particle is observed, for example 

pp -+ ~ t -  + anything. (2.18) 

The corresponding differential cross section may be averaged over the azimuthal 
angle of the single particle in the final state. It then depends on only two variables 
if the initial energy of the system is held fixed. Two variables that are often chosen 

n-+p -n'+anything at 16 GeV/c 
I " ' " " "  

IO' 

Figure 17. The inclusive reactions n+ p + X+ +anything, and x -  p + x-  + anything. Distri- 
bution as a function of p T 2  at 16 GeV/c (Van Hove 1971 unpublished) (note p ~ = p ~ ) .  

as the independent variables are p,, the (longitudinal) momentum of the final 
observed particle in the CM system parallel to the momentum of the incident 
particle, and p, (or p,) the modulus of the (transverse) momentum of the observed 
particle perpendicular to the direction of motion if the incident particle. Thus one 
obtains 

d2 cs 
dPL dPT * 

(2.19) 

It is interesting to average over p, or over pT and plot the resulting distribution. 
An example is shown in figure 17, where an average has been taken over p, and pT2 
(instead of pT) is used as the independent variable. The processes in this instance 
are 

T;- + p -+ T;- + anything 

x+ + p -+ x+ + anything. 

(2.20) 

(2.21) 

It is found that the inclusive cross sections (2.19) have a sharp drop-off as a 
function of p,, as is seen in figure 17. The distribution as a function of both p, 
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and p ,  i s  shown in a ‘Peyrou plot’ in figure 18 in which the density of dots indicates 
the frequency of events. The  semicircles bound the regions that are kinematically 
allowed. 

. f . .  

CM system longitudinal momentum (GzV/c) 

Figure 18. Peyrou plot for x -p  +px- no xf at 16 GeV/c (from Honecker et  al 1969, see also 
Horn 1972). 

3. Theoretical survey 
3.1. Relativistic kinematics for two-body collisions 

We shall now extend the elementary discussion of kinematics that was intro- 
duced in $1.6. There we saw that a scattering amplitude F(s, t )  was a function 
of the invariants s and t. In  order to introduce the idea of relativistic crossing 
symmetry, we now label the incoming and outgoing momenta as in figure 19(a) 
for the process I 

Thus the outgoing momenta are -pc, -pa ,  and their energies are -p:, -pdo. 
Conservation of total energy and momentum requires that 

I. a+b-+c+d.  (3.1) 

P%+Pb + P o + P d  = ( 3 4  

Figure 19. (a) The  labelling of energy momentum four-vectors for the reaction ab 3 cd and 
crossed reactions. (b)  The kinematically allowed physical regions (shown shaded) for 
equal mass particles in a two-body collision, on an s, t plot where s and t denote the 
invariant energies squared. 

For simplicity we assume that all particles have equal masses m. The mass-shell 
condition (see equation (1.13) ) gives 

(3.3) pa2 = p,z = pc2 = pa2 = m2. 
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We define s,t and a third invariant U (minus the exchange momentum transfer 
squared) by 

(3.4) 

(3.5) 

1 

1 

s = ( P a + P J 2  

t = ( P b + P d ) 2  

U = ( P b  + P 2 .  
From the conditions (3.2) and (3.3), only two of these variables are independent and 

s + t + u  = 4m2. 

In  the CM system for particles a and b, we write k2 for the square of the momentum 
and 0 for the scattering angle as in figure l ( b ) .  Then 

(3.6) 

s = 4(m2 + k2) 

t = - 2 4 1  - cos e)  
U = - 2ky1 +cos e). 

The physical values of s and t for process I (equation (3.1)) are shown as the 
shaded region labelled I in figure 19(b). 

The  shaded regions marked I1 and I11 in figure 19(b) correspond to the values 
of s and t (or U) for which the following processes are physically allowed: 

11. b + d - + l + c  

111. b +E-+Z+ d. (3.7) 

For process 11, t is the energy squared in the CM system of particles b and d (the 
antiparticle of d); and for 111, U is the energy squared of b and E .  

The principle of crossing symmetry asserts that the same scattering amplitude 
F(s,  t )  describes all three processes I, I1 and I11 provided suitable values of s and t 
are chosen in each case. This statement applies when the colliding particles have 
zero spin; more generally, with particles of nonzero spin, several scattering ampli- 
tudes are involved in the description of a collision, and the principle of crossing 
symmetry leads to relations between these amplitudes and those that describe the 
‘crossed process’, that is the process in one of the other physical regions. 

For pion-nucleon scattering the kinematics is somewhat more complicated, but 
we also find there exist scattering amplitudes that relate the following three 
processes, 

x+ p -+ x+ p 
x- p -+ x- p 

x+ x- -+ Fp. 
(3.8) 1 

In  this case the physical regions have curved boundaries, the region I being that 
shown in figure 2. 

3.2. Analyticity and crossing symmetry 
In  order to make the principle of crossing symmetry precise, even in the simplest 

case of identical spinless particles, it is necessary to regard F(s,  t )  as a function of 
complex variab1es.s and t .  Then F corresponds to a physical amplitude only when 
these variables take appropriate real values. This involves the study of the analytic 
properties of the scattering amplitude as a function of these complex variables. 
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As an illustration of the analytic properties, we shall consider the special case of 
forward scattering ( t  = 0) for process I, defined above. One finds (for example, 
from quantum field theory) that the forward amplitude F(s,  0) is an analytic function 
of the complex variable s throughout the complex s plane, except for branch cuts 
along the real axis. The  complex s plane for F(s,  0) is illustrated in figure 20(a). 
There is a branch point at the real value, 

s = (2m)2 = 4m2 (3.9) 

which is the threshold at which process I is a physical process allowed by the 
kinematic conditions (see also figure 19(b) along the line t = 0). There are other 

U) (b) 

Figure 20. The  complex s plane for t = 0. (a)  Shows the branch cuts along the real axis and 
the path of analytic continuation from physical region I to physical region I11 ; (b) shows 
the contour C round which one integrates in order to derive a dispersion relation for the 
amplitude F(s, 0). 

branch points in the s plane, for example at the thresholds for production of new 
particles, s = ( ~ W Z ) ~ ,  ( ~ P Z ) ~ ,  . . . in the case of pion-pion scattering. These all lie 
along the real axis. In  addition there are branch points at the corresponding values 
of U for process 111, of which the leading branch point is at U = 4m2. In  this case 
(with t = 0) the threshold U = 4m2 corresponds to s = 0, and the attached branch 
cut is drawn along the left-hand real axis. 

Between the branch points at s = 0 and s = 4m2, the amplitude F(s,  0) is real. 
This means that the amplitude is hermitian, so that 

F(s", 0 )  = F"(s,  0 )  (3.10) 

where a star denotes complex conjugation. 
The  physical amplitude for process I is obtained as indicated in figure 19(a), by 

taking the limit on top of the right-hand branch cut. When s is real and greater than 
4m2, we have 

physical F(s,  0) = limF(s + ie, 0). 
hJ+O 

(3.11) 

The  physical amplitude for process 111, where U is the energy, is obtained in the 
s plane by taking the limit on to the real axis below the left-hand branch cut. 
Analytic continuation by the path indicated in figure 19(a) establishes the analytic 
statement of crossing symmetry, which relates processes I and 111, for the forward 
amplitude. (For further details see Eden et a1 1966, Martin 1969, Eden 1971 and 
Roy 1972.) 
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3.3. Dispersion relations 
The analytic properties of F(s,  0), illustrated in figure 20(a), permit us to derive 

a dispersion relation provided that F(s, O)+ 0 as I sl - fm in any direction in the 
complex s plane. Since F(s,O) is regular inside the closed contour C, shown in 
figure 20(b) we can use Cauchy’s theorem to give 

F(s,  0) = - (3.12) 

If F(s,  0) -+ 0 as I SI  + m, we obtain the dispersion relation 

(3.13) 

In  deriving this result, we have used hermitian analyticity which gives (in the 
limit E -f 0) 

F(s’ + ia, 0) - F(s’ - ie, 0) = 2i Im F(s’, 0). (3.14) 

The  imaginary part of the forward amplitude can be related to the total cross 
section, for process I for s>4m2, and for process I11 for s<O, by means of the 
optical theorem (see equation (1.37)). This permits a relation between F(s,  0) for 
complex s and physically measurable cross sections. 

We have seen in figure 5 that total cross sections tend to constant values at 
large energies. The  optical theorem then gives 

O0 ds’ ImF(s’, 0) 1 0 ds’ Im F(s’, 0) +L S‘-S 
F(s,  0 )  = - 

r 7 4 m ~  S I - s  

Im F(s,  0) = [s(s - 4m2)]’/z o(tota1) 

2: s(constant) as s-+co. (3.15) 
This shows that, for the forward amplitude, our assumptions for obtaining a dis- 
persion relation are not correct. However, we can apply Cauchy’s theorem instead 
to the modified amplitude G, defined by 

S’ G(s, 0) F(s,  0) - F(0,O) - sF’(0,O) (3.16) 

After applying Cauchy’s theorem, we obtain a dispersion relation for F with 
where F’ denotes the derivative of F at s = 0. 

two subtraction terms, 
s2 J m  ds‘ Im  F(s’, 0) 

F(s,O) = F(O,O)+sF’(O,O)+- r 4m2 
S ’ y d - s )  

(3.17) + f 1 0  ds‘ Im F(s’, 0) 
r -a s’2(s’-s) * 

More generally, it is necessary to consider the amplitude F(s,  t )  as a function of two 
complex variables, and in some circumstances one can derive double dispersion 
relations in both variables simultaneously. The latter were first proposed by 
Mandelstam (1958) and they are referred to as a Mandelstam representation for the 
scattering amplitude. 

3.4. Scattering amplitudes and the S matrix 
The S matrix approach to elementary particle physics was proposed by Heisen- 

berg (1943). His idea was to formulate a theory in which the main components (the 
elements of the S matrix) were almost directly related to experimentally measurable 



Regge poles and elementary particles 1021 

quantities. An S matrix element is the transition amplitude from an incoming state 
01 to an outgoing state ,8 in any collision process. Formally this gives 

S,, = (p ,  out I a, in) = (p, in I SI a, in). (3.18) 

Hence it can be seen that S is a unitary matrix. This is related to the collision 
amplitude Tpoc by 

s,, = s,, + i(244 s(cp, - cp,) q,. (3.19) 

The  first 6 function a,, corresponds to zero interaction, the second ensures total 
energy-momentum conservation. With suitably chosen normalization Zp is 
a relativistic invariant. In  the particular case of elastic scattering Tu, is the 
scattering amplitude F(s,  t )  and is related to differential cross sections as noted in 
equation (1.30). 

For pion-nucleon scattering taking account of nucleon spin, Tpa becomes a 
4 x 4 matrix. Then instead of equation (1.30) we get 

(3.20) 

where ua,up denote Dirac spinors. The  matrix Tp, is related to two independent 
scalar amplitudes A and B, 

Tx, = A($, t )  8, - W ( s ,  t )  yCp(41+ 4 2 1 ,  (3.21) 

where q1 and q2 denote the pion momenta and y p  is a Dirac y matrix. 
Instead of the A and B amplitudes, it is often convenient to use the non-spin- 

flip amplitude f ( s ,  t )  and the spin-flip amplitude g(s, t ) ,  which are linearly related to 
A and B. For these amplitudes 

(3.22) 4x 
oT(s) = ~ Im f ( s ,  t = 0 )  I Q11 

The polarization P( 6) is given by 

P ( 0 )  = 2Im[f*g]  (3.24) 

wheref" is the complex conjugate off. (For further details about the S matrix see 
Chew (1966) and Eden et a1 (1966).) 

3.5. Partial wave expansions 

scattering amplitude F(s,  t ) .  Its partial wave expansion takes the form 
For simplicity we will consider equal mass spinless particles having a single 

(3.25) 8xW F(s,  t )  = - x (21 + 1) &(s) P,(cos e> 
k z=o 

where W 2  = s = 4(m2 + k 2 )  and 

(3.26) 

The  unitarity of the S matrix corresponds to conservation of probability. It leads 
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to the optical theorem equation (1.37). For partial waves, in the case where only 
elastic scattering can take place, unitarity takes the form 

i(f?-fi) = 2IfilZ 

f d s )  = 2i 

giving 
exp (2i6,) - 1 

where the phase shift 6,(s) is real in the elastic region. 
More generally, when inelastic scattering is possible, fi satisfies 

Thus 
ql exp (2iS,) - 1 

fi(s) = 2i 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

where 6, is real and 0 < 7, < 1. 

3.6. Resonances and Regge poles 
At a resonance the total cross section becomes large, so that Im F(s', 0) in the 

dispersion relation equation (3.17) also becomes large. This may lead to a useful 
method for approximating the integral in the dispersion relation. More generally, 
the amplitude F(s, t )  will have a pole in the complex variable s, near the real value of 
s at which the resonance is observed. This pole does not lie in the complex s plane 
shown in figure 20, but will be found in the second Riemann sheet that is reached 
through the branch cut. If the resonance corresponds to a state of angular 
momentum 2, the appropriate Legendre polynomial will appear in the residue at the 
resonance pole; thus near the pole we shall have 

where a(s) and b(s) vary slowly with s and 

cos e = 1 + 2t1(~ - 4m2). 

(3.31) 

(3.32) 

It is frequently convenient to analyse the amplitude as a partial wave series; 
indeed this is how resonances are derived from experimental differential cross 
sections. The above resonance would occur as a pole in the partial wave amplitude 
fi corresponding to angular momentum I ,  

Near s = a-ib, we shall have a resonance pole, and 

(3.33) 

(3.34) 

It should be noted that a and b are both dependent on I as well as on s. Writing 

a-ib = s,(Z,s) 
(3.34) becomes 

(3.35) 

g fiN = s - so(l, s) (3.36) 
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For nonrelativistic scattering on a Yukawa potential, Regge (1959) showed that a 
unique analytic extension f ( I , s )  could be defined such that at integer values it is 
equal to the partial wave amplitude, 

f (Z ,  s) = f i ( s )  ( I  = 0, 1,2, ...). (3.37) 

Using Regge's analytic extension, the location so(& s) of the resonance pole in 
equation (3.36) becomes an analytic function. One can then solve the equation 

to give 
s = so( 1, s) 

I = cto(s). 

This permits equation (3.36) to be rewritten giving 

(3.38) 

(3.39) 

(3.40) 

Now the pole in the (extended) partial wave amplitude is located in the complex 1 
plane and its position is a function of s. This is called a Regge pole, and the path 
that it follows as s moves through real values is called a Regge trajectory. We will 
return to these topics in more detail in $4, where our main purpose is to show that 
for large values of t (the energy in channel I1 of figure 19(6)) Regge theory indicates 
that a scattering amplitude may have the asymptotic behaviour, 

F(s,  t )  N C(s) (t/tO)"(s) (3.41) 

where a(s) denotes the location of a Regge pole associated with a resonance in the 
channel I of figure 19(b) (where s is the energy). 

4. Basic ideas in Regge theory 
I n  this section we shall begin by stating in a general way the main objectives of 

the Regge pole model. Firstly we shall indicate how a Regge trajectory may cor- 
relate sequences of particles and resonances. Secondly we will indicate how the 
model predicts that high-energy (quasi) two-body reactions are dominated by 
certain exchanged trajectories. With these two objectives in mind we will then 
outline the manner in which they may be achieved in a mathematical derivation 
provided certain assumptions are made. 

4.1. Regge trajectories and sequences of particles 
The  Regge pole model states that there exist (complex) Regge trajectory 

functions a,(s), depending on s = W 2  (the square of the centre of mass energy), 
that correlate certain sequences of particles or resonances. In  relativistic theory the 
particles associated with a given function a,(s) have the same internal quantum 
numbers (baryon number, isospin, parity, strangeness, etc.) but they have spins that 
differ by units of two. I n  nonrelativistic potential scattering a given function a,($) 
correlates sequences of bound states or resonances, and, in the absence of exchange 
forces, the spins (angular momenta) will differ by only one unit. 

We will begin with the example given by the nucleon (neutron or proton) 
X(938) which has isospin 8, parity +, and spin 3. There are resonances, N(1688) 
and N(2220), in the ZN system, that have spin # and #, respectively, and have the 
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same isospin (4) and parity (+) as the nucleon. The Regge pole model asserts that 
the nucleon trajectory function “(s) satisfies 

(4.1) 1 Re zN(s = (0*938)*) = 4 
Reax($ = (1~688)~)  = Q 
RezN(s = (2.220)7 = 1.. 

The  corresponding Regge trajectory is illustrated .by the full line in figure 21(a) 
which shows a Chew-Frautschi plot of Re aN as a function of the energy squared s 

ll12r h ( 2 4 2 0 y  
/ 

,/4’(2220) 

h 

CO) 

I l l  

/ I  2 3 4  5 6 
s (GeY)‘  

s ( G e V ?  

probable p trajectory in (b). 

measured in G e V .  It will be observed from figure 21(a) that the trajectory is nearly 
a straight line, thus with s in G e V ,  

Figure 21. Chew-Frautschi diagrams showing h- and A Regge trajectories in (a)  and the 

Re “(s) 2: a& + ah s. 
In  particular 

2: - 0.37 ah N 1.0 GeV-2. 
Another Regge trajectory is illustrated by a sequence associated with the 

A(1236). This is also a resonance in the ~ c N  system but it has isospin 8, and spin- 
parity ($)+, so it cannot be associated with the nucleon Regge trajectory since an 
internal quantum number (isospin) is different (also its spin differs by only one 
unit from that of N(938)). 

The  other resonances associated with the A(1236) (see figure 7) are the A(1950) 
and the A(2420) which have spin g and IzL, respectively, while their other quantum 
numbers are the same as the A(1236), namely isospin Q ,  parity + , baryon number 1, 
strangeness 0. The  corresponding Regge trajectory aA(s) is illustrated by the 
broken line in figure 21(a). I t  has 

I a,($ = (1.236)’) = 8 
aA(s = (1*950)*) = $ 
aA(s = (2*420)2) = A$, 

(4.4) 
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Writing 

we obtain 

Thus the slopes of aA and aN are approximately equal, 

a6 2: ah cz 1.0 GeV-2. 

(4.5) 

(4.6) 

(4.7) 
As a third example we take the p(765) meson Regge trajectory, but instead of 

deriving a; we will assume that it takes the same value noted in equation (4.7). 
Then, 

Since the p meson has (mass)* = 0-5 GeV2 and spin 1, we find from (4.8) that 
ao - 0.5 giving 

ap(s) II a; + s. 

0 l P ( S )  N 0.5 + s 

(4.8) 

P -  

(4.9) 
which is illustrated in figure 20(b). 

we obtain a mass 
The  next resonance on the p trajectory should have spin 3. Writing aP(s) = 3, 

m = ~ ' 1 %  = (2..5)1/22: 1.6 GeV. (4.10) 

If the idea of linearity of Regge trajectories is correct, there should therefore be a 
meson resonance having spin 3, mass approximately 1600 MeV, and having its 
other quantum numbers (isospin 1, G-parity +) the same as the ~(765) .  A candi- 
date has indeed been observed; the mt resonance ~ ~ ( 1 6 6 0 )  has isospin 1 and G- 
parity + , and its spin has recently been measured by Hyams et al (1971), who find 
a value 3 in agreement with the p Regge trajectory, drawn in figure 21(b). 

4.2. Exchanged trajectories and high-energy behaviour 
I n  $4.1 we have illustrated the first main feature of the Regge pole model, 

namely the existence of trajectories a(s) such that whenever s = mr2 (where m, is 
the mass of a particle in the trajectory), then a(m,*) = J, (the spin of the particle). 
The  spins of particles on the same trajectory differ by two units. 

The  second main feature of the Regge pole model is the relation between 
exchanged trajectories and high-energy behaviour. We will illustrate this by the 
charge-exchange reaction 

T-  p -+ zo n (s channel). (4.11) 

We call this the s channel to denote that s is the invariant energy squared. Then the 
t channel, as defined in $ 3.1, will be 

pii -+ TC+ no ( t  channel). (4.12) 

The  elastic cross section for z+nO has a resonance at 76.5 MeV, namely the p+ 
meson. This resonance may also be pictured as a bound state of the pii system. 
Thus it is a resonance (bound state) in the process (4.12). As noted in $4.1, there 
is a Regge trajectory associated with this resonance, but in this case it is a function 
of t ,  

a p w  (4.13) 
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The existence of this exchanged p trajectory is indicated schematically in figure 22(11). 
It is common practice to label the exchanged trajectory with the same symbol as the 
leading particle on the trajectory, in this case the p meson. The exchanged object 
is also called a Reggeon to distinguish it from models in which elementary particles 
are exchanged. An important feature about an exchange diagram like figure 22(a) 
is that quantum numbers (charge, strangeness, baryon number, etc, except spin) 
must be conserved at the vertices where the Reggeon meets the lines representing 
the incoming and outgoing particles. 

f f -  TO f f +  f f +  f f +  D 

P n P P P ?I+ 

(01 (61 c c)  

Figure 22. Regge exchange diagrams illustrating: (a) exchange of a p meson trajectory in 
pion-nucleon charge exchange, (b)  Pomeron exchange in elastic xp scattering and 
( c )  neutron exchange in backward x i  p scattering. 

Given all allowed exchange diagrams for the process (4.11), the Regge pole 
model instructs one to choose the diagram in which Rea(t) is largest, in this case 
figure 22(a). Then the Regge pole model predicts that the high-energy behaviour 
of the charge exchange differential cross section is given by 

(4.14) 

I t  is evident that for high energies (large s), the second factor will change much 
faster as a function of t than any given function b(t) ,  so let us assume b(t)  N bo if I t 1 
is not large. Using equation (4.8) with t instead of s, (4.14) becomes 

- da - I bo 12 s2apO-2 exp (2.; t Ins) 
dt 

where a$ = 0.5 and a i  = 1. Integrating over t we obtain 

(4.15) 

(4.16) 

Thus 
ln(aex)  constant-Ins-ln(1ns). (4.17) 

This result compares favourably with the experimental values given in figure 12 
(recall that lnsNln(p(1ab)) at high energies). This gives support to the value 
a: = 0.5, which was deduced in $4.1 by guessing that ab = 1 GeV-2. 

In  figure 22(b) we illustrate an elastic scattering process in which the exchanged 
Reggeon carries no internal quantum numbers. The corresponding Reggeon is 
called the Pomeron (or Pomeranchon) after Pomeranchuk who was the first to 
suggest that a total cross section should tend to a constant at high energies. The  
Pomeron trajectory has the form 

(4.18) ap( t )  = 1.0 +a;. t. 
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I t  follows from the optical theorem, equation (1.37), and $5.2, that the value 1.0 
given for a$ ensures that o(tota1) + constant. 

In  figure 22(c) we illustrate the exchange of a nucleon N (or baryon N”). In  
near-backward xN scattering the nucleon N, or the resonance K*, are treated as 
Reggeons that dominate for large s, at fixed U (the exchange momentum transfer 
squared). 

4.3. Extended partial wave amplitudes and Regge poles 
We turn now to an outline of the mathematical derivation of the results stated 

in the previous two subsections. Regge’s original paper (1959) studied the scattering 
of a particle on a Yukawa potential. I n  that case many results can be proved that 
will be stated here as assumptions. Many of these assumptions cannot be proved in 
relativistic collisions although some of them can be made plausible (see, for example, 
the book by Collins and Squires 1968). Others are guessed by analogy with 
potential scattering, or are made purely for simplicity in an attempt to obtain a 
first approximation to a theory of strong interactions (as in Regge pole models). 

We begin with the partial wave series for equal mass collisions in the t channel 
(so t is the energy squared). Then, denoting the CM system momentum by k and 
scattering angle by 6,  we have 

t = 4(k2+m2) (4.19) 

s = - 2k2( 1 - cos 6 )  (4.20) 

(4.21) 

This series can be shown to converge if cos 6 is inside a certain ellipse, with foci at 
- 1 and + 1. The ellipse extends along cos 0 real to a value that corresponds to 
s = 4m2 (see equation (4.20)). In  order to obtain a form of F(s,  t )  that converges 
even when s is large (cos6 large), Regge made use of the Sommerfeld-Watson 
transform which we will consider in 5 4.4. This method requires an extension of the 
partial wave amplitudefi(t), which is needed in (4.21) only for integer I ,  to a function 
f ( l ,  t), where l may take complex values, such that 

f ( l ,  t) =fi(t) ( I  = 0, 1,2, ...). (4.22) 

This analytic extension can be made uniquely in potential scattering, provided 
certain restrictions are made on the rate of increase of I f ( l ,  t )  I as I I ]  + CO. Indeed, 
for coulomb scattering the partial wave amplitude can be evaluated explicitly and 
is found to have the form 

(4.23) 

A gamma function r ( x )  is regular except at poles at the negative integers and zero. 
Hence, f(1, k) given by equation (4.23) will be regular except for poles given by 

l+1- ie2 /2k=-n  ( n = 0 , 1 , 2  ,... ). (4.24) 

This determines the Regge trajectory a, (k) :  

(4.25) ie2 
2k 1 = a,(k) = -n -  1 +--. 

44 
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The term 'Regge trajectory' is used both for (a) the path in the 1 plane of a,(k), 
moving as a function of E = K 2  and for (b) Reol,(k) plotted against E = k2. The 
latter is the analogue of the Regge trajectories shown in figure 21. Coulomb Regge 
trajectories are shown in figure 23, both for type (a) and for type (6). 

I t  

- 2  '\ 

-; '\ E- 

( 0) ( 6 )  

Figure 23. Regge trajectories for an attractive coulomb potential, (a) the path of the leading 
coulomb Regge pole Z(E) as E varies from - 00 to + CO; (b)  the projection on to the 
(real I ,  real E )  plane of coulomb Regge poles; the broken line shows how the projection 
of a pole moves as E avoids the singular point E = 0 in going from negative to positive 
values. 

When a,(K), given by equation (4.25), takes a positive integer value, 1 corre- 
sponds to  a physical value E ,  of angular momentum and represents a bound state 
in an attractive coulomb potential. Thus (4.25) determines the energies of bound 
states for I = I,, 

eL 
4(10 + n + 1) ' 

E - k 2 = -  
lo - (4.26) 

These are the well-known coulomb levels and they establish, in this example, the 
results stated without proof in $4.1. It has been proved by Regge (1959, 1960) that 
similar results hold for scattering by a Yukawa potential. 

In  relativistic S matrix theory, it is also possible to define analytic extensions of 
the partial wave amplitude fi(t) but it turns out that it is necessary to make separate 
extensions f+(Z,  t )  and f-(Z, t )  of the even and odd partial waves. Thus 

f+(Z, t )  =f i ( t )  (I = 0,2,4, ...) (4.27) 

f-(Z, t )  = f i ( t )  ( E  = 1,3,5, ...). (4.28) 
Then the even signature partial wave amplitude f+(Z, t )  has poles 

I = af(t). (4.29) 
Only when ~$(t) is an even integer (or zero) will this even signature trajectory 
correspond to a physical particle. Similarly the odd signature trajectory function 
m&t) must equal an odd integer when t is the mass squared of a physical particle. 

We can now express the relation to bound state or resonance poles infi(t) more 
precisely than was done in 5 3.6. Let us suppose that fi,(t) ( I ,  even) has a pole at 
t = to, which corresponds to a bound state (to real) or a resonance (to = a-ib). 
Near t = to, we can expand aL(t):  

4 t )  N- 4 x t o )  + ( t  - t o )  4 t t o )  

N Io + ( t  - to) .b. (4.30) 
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Thus, for Z near lo and t near to, the amplitude will have the form 

R f +(l, t )  N z- lo-( t - to)a;  

N RI.; 
- (z-lo)/a;+to-t'  (4.31) 

Thus, when l = lo we have a bound state, pole or Breit-Wigner resonance pole in 
f +(lo, t )  =fi,(t) at t = to. Also, when t = to we have a Regge pole at 1 = lo in f +(l, to). 

It has been proved for Yukawa potentials, and it is plausible in general, that 
Regge trajectories ai( t ) ,  a;(t), become complex when t is above the lowest physical 
threshold ( t  = 4m2, for equal masses). For t < 4m2, it is often assumed for simplicity 
that the trajectory functions are real but this result is not always true in potential 
scattering and is not likely to be true in general. 

For Yukawa potential scattering, Regge trajectories l = a(s) can be numerically 
calculated from the Schrodinger equation. They are not even approximately 
linear for a simple attractive Yukawa potential, but one could construct a super- 
position of these potentials which was linear for low values of s. The  idea that a(s) 
may be approximately linear in s was suggested by the experimental results, especi- 
ally those on nucleon resonances, some of which were discussed in $4.1. 

4.4. Partial wave series and the Sommerfeld- Watson transform 
For simplicity, we will illustrate the transformation of the partial wave series 

(4.21) without taking account of the odd and even signature extensions of fi(s). 
After completing the transformation we will include the effects of odd and even 
signature in the result. We begin with (4.21) which we re-write here, with 
x = COS 0 = (1 + 2s/(t - 4m2)}, 

(4.32) 

Letf(l, t )  be the analytic extension offi(t), and for simplicity we will assume that it 
is regular, in the half-plane Re 1 > - $, except for complex poles (the Regge pole 
model). One can show that these poles will be in I m l 2 0 ,  as illustrated in 
figure 24(a). 

The procedure for the Sommerfeld-Watson transform begins by re-writing the 
series (4.32) in the form of an integral round the path C shown in figure 24(a). 

where 

(4.33) 

(4.34) 

The poles of g ( l )  inside the contour C in figure 24(a) at l = 0,1,2, . . . arise from the 
zeros of s i n d .  The  sum of the residues at all these poles leads directly to the 
partial wave series given in equation (4.32). If f ( l ,  t )  happens to have a real pole, 
one can detour round it as indicated in figure 24(a). Choice of t can ensure that 
f ( l ,  t )  has no poles at integers. 
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The  second stage of the Sommerfeld-Watson transformation consists of using 
Cauchy's theorem on the closed contour shown in figure 24(b). 

g(Z) dZ = (residue of g(Z) at 1 = e,). 'I 2ni (cc'c") n 
(4.35) 

The  poles of g(Z) at Z = a,(t) arise solely from the poles of f(Z, t).  Using (4.35) we 
can rewrite (4.33) in the form 

8nt112 n(2an + 1) Y, P ( - Z )  

27rl ' i  c' k n  sin (m,) 
g(Z)dl---: g(Z)dZ--x (4.36) 

where a,(t) indicates one of the Regge poles off(& t )  illustrated in figure 24, and the 
sum is over poles to the right of C", which is taken along Re Z = - 8. 

( b )  

Figure 24. (a) The choice of the path C in equation (4.33), Regge poles a0, al, cy2, are illustrated. 
(b) The closed contour C+C'+ C" giving the result (4.35). 

It can be made plausible that the integral along C' in (4.36) tends to zero as the 
radius of the semicircle C' tends to infinity. We note that z and s are related by 
equation (4.20), namely, 

S 2s z = l + - = l + -  2k2 t - 4 m 2 '  (4.37) 

Thus if s+m for fixed t ,  we have z-tco. For large z, 

[ P,( - z )  [ NI z p a .  (4.38) 

Therefore the right-hand side of equation (4.36) should be dominated, for large s 
(large z) ,  by the pole ao(t) for which Re e is largest. If we order the en(t) so that 

Re a. > Re cxl > Re cx2 > .. . (4.39) 

we obtain the following form for F(s, t) given by (4.36) when t is fixed and s is large 
(note that equation (4.19) fixes k when t is fixed), 

(4.40) 
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where 

(4.41) 

so is an arbitrary scale factor and B(s, t )  in equation (4.40) denotes a 'background' 
term, which is assumed to be relatively small as s+cc for fixed t in the Regge pole 
model. 

A relativistic theory should take account of the separation of odd and even 
partial waves in (4.32) before making the transformations. This modifies the result 
(4.40), and instead it leads to the following asymptotic form for fixed t as s-foo, 

(4.42) &(t) exp {in(& - 1 - (3 + B(s, t ) ,  
cos (+%-a,) +E 

m 

The first term on the right of (4.42) corresponds to even signature Regge poles, 
the second to odd signature, the third denotes background effects. 

The asymptotic form (4.42) illustrates the main predictions of the Regge pole 
model, and we will consider some of its simpler consequences in the next section. 
If the formula (4.42) for F(s , t )  is substituted into the differential cross section 
formula equation (1.30), one obtains the result of the Regge pole model that was 
stated in 0 4.2, equation (4.14). 

4.5. Branch cuts in the angular momentum plane 
Regge branch cuts are now regarded as essential both for consistency in Regge 

theory and for phenomenological applications. These cuts arise from branch-point 
singularities of the extended partial wave amplitude f + ( l ,  s) or f - ( l ,  s). The  original 
assumption of Regge pole models, that the only singularities in R e l >  -4 are 
simple poles, was made on the basis of potential scattering from a Yukawa potential. 
The  resemblance between this type of potential scattering and relativistic quantum 
field theory is suggested by considering a sum of the sequence of Feynman diagrams 
illustrated in figure 25(a). The sum of the Feynman integrals correspqnding to this 
infinite sequence of 'ladder ' diagrams is illustrated symbolically in figure 25(b). 

Yukawa potential scattering (Regge 1959, 1960) leads to extended partial wave 
amplitudesf(1, s) having only simple poles in Re 1 > - 8. The same result holds for 
ladder diagrams (Polkinghorne 1963, Federbush and Grisaru 1963). However, the 
combination of ladder diagrams shown in figure 25(c) leads to a branch point in 
f ( 1 ,  s) and there are general consistency arguments to show that such branch points 
are essential to Regge theory (Mandelstam 1963). 

General rules can be obtained for the asymptotic behaviour of ladder diagrams 
and also of more complicated diagrams (Eden et a1 1966). For certain classes of 
diagrams it is found that there is cancellation between their branch-cut contribu- 
tions. However, diagrams like that shown in figure 25(c) lead to branch cuts that 
are not cancelled. The corresponding leading asymptotic behaviour (Landshoff and 
Polkinghorne 1969) has the form, as $+CO, 

(4.43) 
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This may be be compared with the simple pole terms shown in equation (4.40). The  
branch-cut nature of the singularity leads to  the contour in the I plane shown in 
figure 25(d),  and in particular to the extra factor in (4.43) involving In (s/sl), where 
s1 is another unknown scale parameter. 

The  analysis of branch cuts also requires separation into even and odd signature 
partial waves, which affect the phase factors. Thus, for even signature branch cuts 
(4.43) has the form 

FoUt(s, t )  - BA,,(t) exp +(I - &a,)) (4.44) 

In  practice the logarithmic terms in branch-cut contributions to Regge theory can 
probably be approximated by Regge pole terms in many situations (but not all). 

Figure 25.  (a) Ladder diagram leading to the Regge pole indicated in (6), (c) a diagram giving 
a Mandelstam-Regge branch cut and ( d )  the resulting contour of integration round a 
branch cut in the I plane. 

We will therefore discuss Regge phenomenology mainly in terms of Regge poles. 
The  latter may be 'genuine' and correspond to particles (as discussed in $4.1), or 
they may be 'effective' poles that approximate the effects of branch cuts. This 
situation is unfortunate, since it means that there is not a unique correspondence 
between the two aspects of Regge theory described in $$4,1 and 4.2, respectively. 
Such a correspondence could be re-established if a unique method was discovered 
for evaluating the discontinuities across Regge branch cuts. 

5. Applications of Regge pole models 
In  this section we begin with a preliminary summary of the properties of a 

Regge pole model. We shall then proceed by comparing the model with experi- 
mental results. In  the course of these comparisons, we shall introduce more 
features of Regge pole models and shall indicate some of the difficulties that arise. 
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5.1. Preliminary summary of properties 
(i) Regge trajectories a i ( t )  and a;(t) correlate groups of particles (stable 

particles or resonances) having the same internal quantum numbers (baryon 
number, isospin, strangeness, parity, etc) but having angular momenta that differ 
by multiples of two units. Examples of trajectories were given in figure 21. 

(ii) The  trajectories are such that for a i ( t )  when t = m2 ( m  being the mass of a 
particle on the trajectory of angular momentum J ) ,  

a i ( t  = m2) = J 

a;(t = m2) = J 

(5-1)  

(5.2) 

for an even signature trajectory, and similarly 

for an odd signature trajectory (see 54.4). 
(iii) The  high-energy behaviour in the s channel as s- tco,  at fixed t ,  is dominated 

by the trajectories a t ( t ) ,  a f ( t ) ,  . . . having the largest real parts. This gives equation 
(4.42) which we repeat here for ease of reference 

The  background term B is assumed to be small. The  residues P;(t) are assumed to 
change slowly but they must have zeros when a i ( t )  = -2, -4, etc. Similarly 
&(t) must be zero when a;(t) = - 1, - 3, etc. If these zeros did not occur, the 
amplitude (5.3) would be singular for a(t)  equal to  a negative integer and such 
unphysical singularities should not be present. The  singularities for a(t)  equal to 
positive integers are physical and correspond to the resonance poles in the partial 
wave amplitudes that give rise to the Regge trajectories. The  negative integers are 
called ‘nonsense values’ of an(t). 

(iv) Branch ‘cuts in the 1 plane give terms like that in equation (4.44) which are 
additional to the terms shown in equation ( 5 . 3 ) .  

(v) The  residues P+,(t), or &(t), are sometimes assumed to be zero at all negative 
integers (and when a,(t) = 0). At ‘right signature’ points these are the zeros noted 
in (iii) above. At ‘nonsense wrong signature’ points (eg a t ( t )  = - 1, or a,(t) = 0) 
these zeros will make the corresponding term in (5.3) equal to zero. 

5.2. Total cross sections and the Pomeron trajectory 

leading pole in ( 5 . 3 )  (ie the one with the largest real part) of even signature, 
Consider any elastic scattering amplitude F(s,  t )  and at t = 0 take only the 

From the optical theorem (equation (1.37)) 

Im  F(s, 0) N 2ks1/2 uT(s) 

N SOT(S). 
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If, as suggested by figure 5, u ~ ( s )  = o(tota1) tends to a constant value as s + x ,  then 
for large s 

Im F(s,  0) .V s(constant). 

.$(t = 0) = 1. 

(5.6) 

(5-7) 

Comparing equation (5.4) and (5.6) we see that 

This establishes that, in order to obtain an asymptotically constant total cross 
section, there must be a trajectory that goes through 1 at t = 0. The signature must 
be even (an odd-signature term of power s from (5.3) has zero imaginary part). 
This even-signature trajectory is called the Pomeranchuk trajectory and denoted zP, 
thus 

ap(t  = 0 )  = 1. (5.8) 
Since the signature is even, there is no corresponding physical particle at t = 0, but 
the trajectory could correspond to a physical particle at up = 2. The slope U& of 
this trajectory is rather uncertain (see equation (5.19) and figure 26) and no corre- 
sponding particle at cyp = 2 has been uniquely identified. The object that is 
exchanged and gives rise to c+(t) is called the Pomeron, or Pomeranchukon. The 
above conclusion remains valid also when the elastically scattered particles have 
nonzero spin, for example, in 7iN scattering. 

5.3. Total cross sections and leading Regge trajectories 
Exchanged ' Reggeons ' (Regge trajectories) must satisfy conservation laws 

appropriate to the crossed channel. Elastic scattering in the s channel always 
allows the exchange of vacuum quantum numbers in the t channel. The Pomeron P, 
noted in the previous section, is one example of a trajectory of even signature and 
carrying 'only the quantum numbers of the vacuum (zero charge, zero strange- 
ness, etc). 

The  leading correction terms to Pomeron exchange in z + p  and z-p  elastic 
scattering come from exchange of a Reggeon P' having the same quantum numbers 
as P, and from exchange of the p trajectory. Symbolically, using the optical theorem, 
one can write 

soT(x-p) P+ p' + p (5.9) 
SaT(%+ p) N P+ P' - p (5.10) 

where P denotes Im F(s,  0) given by equation (5.4) and P' and p denote similar 
expressions but with smaller values of "(0). Thus (5.9) and (5.10) have the form 

oT(x- p) N CO s("0-1) + CIS(al-l) + czs("2-1) (5.11) 
c0 ~(ao -1 )  + c 1 ~("1-1) - c2 s(aa-1) (5.12) p) 

where 
a0 = orP(O) = 1 011 = a p ( 0 )  a2 = a,(O). 

The values of the constants in (5.11) and (5.12) can in principle be obtained from 
the experimental points in figure 5. It is found that only a poor fit is obtained if 
c1 = 0;  for this reason it is believed that there must be a Regge trajectory P' ,  
although it may be a pole approximating a branch cut rather than a genuine Regge 
pole. 
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The  difference of (5.11) and (5.12) gives 

In {uT(x- p) - uT(n+ p)) - In ( 2 4  + (aZ - 1) In (s). (5.13) 

According to the experimental results shown in figure 6, and noted after equation 

2cz-44mb ( c + , - l ) ~  -0 .31i0 .04  (5.14) 

This gives a,(O) = az N 0.69 0.04. Such a value is unexpectedly high and it is not 
consistent with the p trajectory illustrated in figure 21(b). It seems likely that (5.9) 
and (5.10) oversimplify the situation and more trajectories should be taken into 
account. This would lead to a more complicated form for Au(np), such as that in 
equation (2.3) for example. 

Other total cross sections that can be studied in a similar manner are those for 
pp and pp collisions and for K-p and K + p  collisions. Each of these is thought to 
involve at least five Reggeons (P, P’, p, w, A2) ,  However, the increase of uT(K+p) 
indicated in figure 5 is difficult to explain without also including at least one 
Regge branch cut (Frautschi and Margolis 1968, Barger and Phillips 1969, 1970, 
Phillips 1971). 

( 2 4 ,  

5.4. Phase-energy relations 
The  phase of the amplitude (5.3) is determined from the same parameters as 

are shown in (5.11) and (5.12). The  latter involve only ImF(s,O) but each term, 
F, say, in (5.3) has R e F I I m F  equal to cot.rr(l-Ar) for even signature, and 
- tann(1- ha) for odd signature. Hence if we assume only P, P’, p exchange in 
xp  scattering, (5.3) and (5.11) give the ratio ReF(s,O)/ImF(s, 0) for forward T;-p 
scattering in terms of the constants shown in (5.11). Similarly, (5.12) leads to the 
corresponding ratio for n- p elastic scattering. 

The  phases of the forward n-p and x-p scattering amplitudes have been 
measured (Foley et al 1967). They agree qualitatively with the total cross-section 
data, but they are not yet precise enough to give a detailed check on the parameters. 

5.5. The forward elastic peak 
For simplicity we will consider energies sufficiently high so that only the 

Pomeron pole need be considered. Then a scattering amplitude would take the 
form 

Assuming that near t = 0, the Pomeron trajectory has slope a’, we obtain 
F(s,  t )  - b d 4  exp {.o(t) In (4. (5.15) 

ao(t) = 1 +a’t + ... . (5.16) 
Then, from equation (1.30) the differential cross section, near t = 0 as s+m, will 
have the form 

--- ‘a 1 exp (2a’t In (SI). 
d t  1 6 ~  (5.17) 

In  the physical region t is negative. This result therefore predicts that the forward 
elastic peak has a width A(s) (at relative height l ie) ,  

1 
2a‘ In (s) ’ A(s) - ~ (5.18) 
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Experimental confirmation of the formula (5.17) is shown in figure 26, where b(s) 
is plotted against p(1ab) - 4s on a log scale. The  quantity b(s) is obtained by fitting 
experimental values of differential cross sections to the formula 

(5.19) 

The  best linear fit to the high-energy data shown in figure 26 for proton-proton 
scattering gives 

b(s) 1: 0.4 In (s). (5.20) 
Thus the slope of the Pomeron trajectory, a’ in equation (5.17) appears to be 0.4, 
which is considerably less than the value of 1.0 that was indicated by the Regge 
trajectories shown in figure 21. There are various ways to explain this discrepancy; 

I I I I I I 

2 4 IO 20 40 70 
p c l a b )  (GeV/c) 

Figure 26. Experimental values for the slope 2b(s) of the elastic forward peak in the differential 
cross section for proton-proton scattering. 

one possibility is that the Pomeron trajectory is exceptional (because it is the leading 
trajectory) so it could have a different slope from all others. Another possibility 
is that the data in figure 26 are not sufficiently asymptotic and F(s,  t )  cannot be 
approximated by a single term as in equation (5,15), but more terms are significant. 
The  latter possibility is strengthened by data on b(s) (equation (5.19)) from other 
processes, for example in K-p scattering b(s) is nearly constant up to the region of 
20 GeV/c laboratory momentum. 

5.6. The effects of particle spin, n-N scattering 
Experimental results for x- p charge-exchange scattering are illustrated in 

figure 13. There is a flattening of the differential cross section in the forward 
direction ( t  = 0), which becomes a dip at the higher energies. Such a dip cannot be 
explained by a single amplitude in a Regge pole model, since this gives a form like 
that in equation (5.19). 

If allowance is made for nucleon spin, the n-p exchange amplitude contains a 
‘spin non-flip’ amplitude f ( s ,  t) and a ‘ spin-flip’ amplitude g(s, t). The  latter 
vanishes in the forward direction. The  former cannot vanish, since it is related to 
the total cross section difference aT(5i- p) - aT(x+ p) by isospin invariance. 
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The  differential cross section has the form (assuming only p exchange) 

du(n- p + no n) sZ2p-' q n 2 ( q N 2  + +N2) 
N 

dt cos2(7i.ap/2) (5.21) 

where a,, = ap( t )  is the p trajectory, q n  denotes coupling of p to x ,  and qN the non- 
spin-flip coupling to the nucleon, The  spin-flip coupling & vanishes at t = 0. 
Thus the experimental results shown in figure 13 show that & is large except 
at t = 0. 

I t  is often assumed in Regge models that the residues, like qn2(qN2+$N2) in 
(5.21), become zero at all values of t for which ap(t) is a negative integer or zero. 
This not only prevents an unphysical infinitity in (5.21) at negative odd integers, 
but it also introduces zeros in the leading term (shown in (5.21)) when 
a p  = 0, -2, -4 ... . The first of these zeros, according to the trajectory for ap( t )  
shown in figure 21, should be at t = -0.5. This approximates closely to the dip 
that appears in the experimental results in figure 13. 

* t LGeV)' 

Figure 27. The p trajectory acp(t) evaluated for t < 0 from data on xN charge exchange scattering 
(Ter Matirosyan 1966). 

Using the experimental results of figure 13 and the formula (5.21) it is possible 
to evaluate ap(t) for t < 0. The  resulting values are shown in figure 27 and are in 
good agreement with the p trajectory illustrated in figure 21. However, it should be 
noted that agreement with figure 13 can also be obtained by using a Regge cut as 
well as the p pole but not assuming zeros of 7 and $ in (5.21) at t = -0.5 (Kane 
et a1 1969, 1970). 

5.7. Polarization 

given by 
I t  was noted in equation (3.24) that the polarization P ( 8 )  in nN scattering is 

P(s,  t )  = 2 Im ( f * g )  (5.22) 

where f =f(s, t) is the non-spin-flip amplitude and g = g(s, t )  is the spin-flip 
amplitude. 
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If only one Reggeon contributes to the n-p to n o n  scattering amplitude, the 
phase is determined as in equation (4.42) for a single odd signature term. Further, 
it has generally been assumed in Regge theory that such a Reggeon couples equally 
for spin-flip and non-spin-flip so that f and g would have the same phase. Then 
the polarization given by equation (5.22) would be zero. 

Experimentally it is found that the polarization P(s, t )  for 7c-p charge exchange 
remains fairly constant up to 16 GeV/c at a value 10 to 15%, for t out to about 
0.3 Gelr2. This confirms the suggestion made earlier, that there is at least one more 
Reggeon making significant contributions to the process 7c- p --f K O  n. Additionally, 
it could be that f and g are differently coupled to Reggeons. 

5.8. Fermion Regge poles and backward scattering 
In  7;+p backward scattering, neutron exchange is allowed as shown in 

figure 28(a), and N"(1236) exchange can also take place (figure 28(b)).  However, 
in r p  backward scattering neutron or proton exchange is forbidden by charge 

f f+ ?r+ . P  + I 

ff- .P Y. n (p) 
I I 

g ( n n p )  y ,y 
g ( n r p )  g [ nnp) g ( n n p )  

( e )  ( f )  ( g )  

Figure 28. (a)-(d) show baryon exchange diagrams related to the backward scattering discussed 
in $0 5.8  and 5.9. (e)-(g) illustrate the factorization of Regge residues discussed in $5.10. 

conservation, but N*++'(1236) exchange is allowed (figure 28(c)). If we assume that 
near to backward scattering, the amplitudes are dominated by the Reggeons 
corresponding to the allowed exchanges, the differences between x+ p and 7c- p may 
be attributed to the effect of neutron Regge exchange. 

Fermion Regge poles create nontrivial complications in the Regge formalism, 
not only in the spin-coupling coefficients, but also because they are liable to intro- 
duce spurious singularities. The latter have to be cancelled somehow, for con- 
sistency, but there is some ambiguity in how to do it. We will not enter into these 
complications here; they are outlined in the book by Collins and Squires (1968) and 
in  the review by Collins (1971) who lists further references, 
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The differential cross section at fixed U takes the form 

da  1 1 + exp (- in-) (a+-$) 
du 64n2 ksf/2 { I '+( 
- w  

cos n-a+ 

1 + exp ( -  ix) (a-- h) (5.23) 

where a+(&) and a-(Ju) correspond to natural and unnatural parity Regge tra- 
jectories. They satisfy a symmetry relation 

a+(Ju) = a-(J - U) (5.24) 

and there is also a relation between the residues p+ and p-. 
The residues ,f3+ and p- in (5.23) are required to have zeros to kill unphysical 

divergences due to zeros of cosn-a*:. They are often assumed, therefore, to have 
zeros for 

,+=-I p ,  - 3  2,  ... a- = -1 2 ,  - 3  2 ,  * ' * a  (5.25) 

Then the phase factors in (5.23) will produce zeros in the terms shown (the leading 
terms by assumption). The  zero in the neutron exchange term can be estimated 
from the trajectory shown in figure 2l (a) .  This gives 

ax(u) = - 8  at U = -0.2 G e V .  (5-26) 

Hence we have a preliminary interpretation of the dip in x + p  scattering at 
U = -0.2, shown in figure 14. Xeutron Regge exchange is not permitted in x-p 
scattering and no dip is observed. Both n-+p and z - p  have N"(1236) exchange and 
this may contribute a large part of x-p scattering near U = 0. Alternative explana- 
tions of the dip in z + p  scattering may be obtained by means of Regge cuts using 
pole-cut destructive interference (Kane et a1 1969, 1970). 

For suitably chosen processes in the backward direction there is no known 
Regge trajectory that can be exchanged. This situation occurs with 

K- p --f pK- (5.27) 

The  cross section for this process decreases like sr9 near U = 0 (but at relatively low 
values of s-3 GeV'). A double Regge exchange is possible (of K+ and A). This 
would produce a Regge branch cut which would correspond to a backward cross 
section decreasing faster than s-~. 

5.9. Photoproduction 
Photoproduction processes at high energies may be considered by means of 

Regge theory in a similar manner to two-body reactions involving only strong 
interactions. Thus the two processes 

yp + nz+ yp --f pxo (5.28) 

in the near backward direction are related to z + p  or x-p scattering. Both of the 
processes (5.28) can involve X(938) or N"(1236) exchange (isospin $, or # as shown 
in figure 28(d) ). One might therefore expect a dip at U N  - 0.2, similar to that found 
for z + p .  Such a dip has not been observed, indicating that the simplest Regge 
model described in 0 5.8 above is not adequate. 
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5.10. Two- body reactions in general 
In  the previous sections we have shown in several examples how Regge pole 

models can give a simple preliminary fit to the data that is not valid when a wider 
range of experimental information is considered, This should not be taken as a 
sign of failure of Regge theory but rather as confirmation that it involves a non- 
trivial parametrization of collision amplitudes. If a Regge trajectory is allowed in 
two different reactions, there will be a relation between its contribution to the two 
reaction amplitudes. If this contribution vanishes for a certain value of t in one 
amplitude it may also vanish in the other. 

The  relation between Regge poles and resonance poles suggests strongly that 
residues at poles factorize in the manner illustrated in figure 28(e) (f) (g). This 
indicates that the residues at the Pomeron pole are products of the coupling con- 
stants g that are shown in the diagrams. Thus for xx scattering (5.4) would become 

Similarly rcN and NN scattering would give 

FnN N ig(xzP) g(h"P) - is",! 
FN"i(g(NNP))' - . (3 

Using the optical theorem this gives 
UT(XT) UT( NN) N uT(KN)~. 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

Although this relation is not directly measurable, it shows that factorization 
provides a powerful restriction on results from Regge theory. It gives relations 
between Regge pole contributions that occur in different two-body reactions. This 
severely reduces the number of parameters that are available for fitting data. 
Although the number of parameters may be large, when one takes into account spin 
complications and correction terms due to nonleading Regge trajectories or branch 
cuts, there will be a very large amount of experimental data available when a 
detailed study has been made of all possible reactions resulting in the particles or 
resonances that were listed in table 1. We will not give an exhaustive list of these 
reactions (an extensive, but still incomplete, list by Collins (1971) shows more than 
seventy five two-body or quasi-two-body reactions). Instead we will give some 
illustrative examples of different types of reaction and show the leading Regge 
trajectories in each case. They are classified according to the type of Reggeon 
exchange that is expected to dominate at high energies. The Reggeons are denoted 
by the leading particle (resonance) on each trajectory. 

Charge exchange (near forward) 

x- p -+ no n 

n-p-twOn ( p )  

K-p-tROn (p+A,) 

( p  exchange) 

YP+XOP ( P f W )  
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The baryons on the right-hand side of these reactions could involve resonances 
instead of n or p. Similarly, baryons in reactions listed below could be replaced by 
resonances. 

Strangeness exchange (near forward) 
7i-p-tKOA (K(494)+K(892)) 

K-p-+x-C.+ (K(494) +K(892)) 

Pseudoscalar meson exchange (near forward) 
E -  p --f Ai n (n exchange) 

x-p+ pOA(1236) (7 + A,) 
Ti-p-+pon 

P" + "P 
yp -t n-A++(1236) 

( X  + w + A2) 
( X +  p + w + A,) 

(n + p + A2) 

Baryon exchange (near backward) 
x- p -+ 7-  p 
x+p-+x+p (N(938) +A(1236) 

yp --f E+ n (N( 93 8) + A( 123 6) 

(A( 1236)) 

Elastic scattering (near forward) 
Ti- p -+ Ti- p 

K-p- tK-p  (P+P'+p+w+A,) 
K + p +  K i p  ( P + P ' - p - u  +A,) 

(P+ P' + p )  

Quasi-elastic (near forward) 
xp-+xN+(1400) (P+P'+p) 

YP+POP (P+P' + A2+ X )  

Exotic exchange (near forward) 

exchange can take place. 
No known single Reggeon exchange is allowed but double Reggeon (branch cut) 

~ i -p -+K+x-  (pK(892) cut) 

x-p+x+A-(1236) ( p p  cut) 

Exotic baryon exchange (near backward) 
K- p -+ K- p 

pp -+ RA (NA cut) 

(K(892) A( 1236) cut) 

We conclude this section by noting again that (i) the above list shows only a 
selection of reactions and (ii) there may be significant contributions from Reggeon 
exchange, either of poles or cuts, other than those listed as the leading trajectories. 
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6. Developments from Regge theory-duality 
In  this section several developments from Regge theory will be outlined. The 

first of these is an attempt to combine information about low- energy collisions with 
high-energy Regge theory, which leads to ‘finite energy sum rules’. The  second 
concerns an apparent (approximate) equivalence of Regge theory to an average over 
resonances at low energies, for certain scattering amplitudes. This equivalence is 
called ‘duality’, and is explicitly shown in a representation due to Veneziano, which 
forms the third topic in this section. We will conclude with a brief discussion of 
some aspects of Regge theory applied to many-particle production in high-energy 
collisions. 

6.1. Finite energy sum rules 
These rules will be denoted by FESR in the following discussion. They were 

first used by Igi (1962, 1963) when he deduced that a second trajectory, the P‘, 
was necessary for fitting nN data, in addition to the Pomeron trajectory and others 

I 
Figure 29. The contour in the complex v plane used in deriving the FESR given in equation (6.6). 

associated with mesons. However, their significance as a starting point for a dis- 
cussion of duality was not noticed until much later, when they were developed 
independently by several groups, including Logunov et a1 (1967), Igi and Matsuda 
(1967a, b) and Dolen et a1 (1967, 1968). 

The  general idea of FESR is to use a dispersion relation at fixed momentum 
transfer (fixed t )  and approximate the high-energy part of the integral by several 
Regge poles. The simplest derivation is by means of Cauchy’s theorem using the 
contour shown in figure 29, where the variable v is defined by 

s - U  v = -  
4m ’ 

For illustration, me consider a scattering amplitude F(v,  t )  having no bound-state 
poles and antisymmetric under v--f - v. Then, integrating F(v,  t )  round the closed 
contour shown in figure 29, gives zero. Hence 

dv{F(v + ie) - F(v - ie)} + dv{F(v + iE) - F(v - ic)} = - 

where C denotes the circular part of the contour I V I  = vl. From the antisymmetry 
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of F,  the left-hand side of (6.2) gives 

The right-hand side of (6.2) is now approximated by the Regge pole form for an 
antisymmetric amplitude given in equation (5.3) (odd signature), 

F ( v )  2: &(t)  van(i + tan (+ran)),  
n 

With this approximation, after using the antisymmetry of F(v ) ,  one obtains 

- I $ v F ( v ) i  -2T,p,vp.+l/;idBexp n [iO(an+ l)] (i+tan$ra,) 

From (6.3) and (6.5) one obtains the FESR 

More generally, whether F(v,  t )  is symmetric or antisymmetric, one can choose N 
so that vvF(v,  t )  is antisymmetric in v. One then obtains the FESR, 

If F(v, t )  has bound-state poles, there will be additional terms containing their 
residues. 

FESR provide additional constraints on Regge parameters in that they demand 
consistency with low-energy data as well as high-energy data, although the Regge 
content of FESR occurs only at high energies. An excellent review of applications of 
FESR has been given by Jackson (1969), who gives further references. We will note 
one particular application in the next section. 

6.2. Duality and exchange degeneracy 
The FESR (6.6) may be applied to the antisymmetric pion-nucleon forward 

scattering amplitude, A(-) + vB(-) at t = 0. Then, by the optical theorem, the left- 
hand side can be expressed as an integral involving differences of "-p and x + p  
total cross sections. The  right-hand side should involve only the p meson Regge 
trajectory. Each side can therefore be plotted as a function of vl, the left-hand side 
being given by experiment, the right-hand side by Regge theory. A comparison 
made by Igi and Matsuda (1967a) is shown in figure 30. 

The  two curves in figure 30 suggest the possibility that in the low-energy region 
the Regge amplitude may represent an average amplitude in which the local 
fluctuations due to resonance are smoothed out in some suitably chosen manner. 
It will be recalled that the Regge amplitude was obtained from resonances in the t 
channel. The  idea suggested by figure 30 is that the Regge amplitude may also be 
regarded as an average over resonances in the s channel. This idea has been given 
the name 'duality'. 
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I t  should be emphasized that duality is an idea rather than a theory. It has many 
different interpretations, some of which we will illustrate here, but it does not lead 
to unique prescriptions. Its simplest form, illustrated in figure 30, receives con- 
siderable support from the FESR for the same amplitude at values of t not equal to 
zero (Dolen et al 1968). It was noted (following equation (5.21)) that there is 
evidence for a zero in the p trajectory’s residue P(t) at t N -0.5. Since, only the p 
trajectory contributes to the FESR for the antisymmetric srN amplitude, the right- 
hand side of equation (6.6) should be zero at t z :  -0.5, The left-hand side (for 
t < 0) can be obtained from phase-shift solutions in the low-energy region and it is 
found to have a pronounced minimum near t = -0.5. 

20 40 u- 

I 
Figure 30. The left-hand side of the FESR equation (6.6) is denoted A for an antisymmetric 7rK 

forward amplitude. The  right-hand side is denoted A‘, derived from p Regge exchange. 
Both are plotted against Y defined in equation (6.1) (from Igi and Matsuda 1967a). 
(v is measured in units of the pion mass, and the units of A, A‘ are arbitrary.) 

Another aspect of duality was noticed by Schmid (1968). He observed that the 
partial wave amplitudes obtained from the Regge amplitude corresponding to 
single p exchange have a resonance-like behaviour. The  partial wave phase-shifts 
go through ir, sometimes at a sequence of energy values that approximates to a 
sequence of resonances. This remark like those about FESR and duality applies 
only to certain amplitudes. I n  particular, those amplitudes (eg elastic amplitudes) 
that involve Pomeron exchange do not satisfy either aspect of duality. 

A third aspect of duality may be illustrated by K + p  scattering and K-p scatter- 
ing. The  former has no resonances, and therefore should have a small cross section 
if the Pomeron (non-dual) part of the amplitude is excluded. We have, in fact, 
contributions to K + p  and K-p scattering from P, P‘, w,  A, and p ,  

F(K-p)  = P+P’+w+Az+p (6.8) 

F (K+p)  P+ P’ - w +A,- p .  (6.9) 
Thus, if we accept that the Pomeron is non-dual, then the remainder of the K + p  
amplitude should be small. This can be achieved if we have equality between the 
Regge contributions, namely, 

P’EU and A, = p. (6.10) 
The  P’ is an even signature trajectory, whereas the w is odd signature. Equation 
(6.10) states that both Regge trajectories are the same and that their residues are 
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also the same. This is precisely the situation that occurred in our simple illustration 
of Regge theory in 0 4.4. It occurs in potential scattering when there are no exchange 
forces. I n  relativistic theory the equivalence of a pair of odd and even signature 
Regge trajectories (and their residues) is described as ' exchange degeneracy'. Note 
that exchange degeneracy is only approximate. It implies that only the Pomeron 
contributes to K + p  scattering, but owing to the sign differences between (6.8) and 
(6.9) both the P' ,  w and the A,, p trajectories contribute to K-p scattering. 

We have noted above that duality implies an equivalence between Regge ampli- 
tudes and suitably averaged resonance amplitudes. However, the contribution from 
the Pomeron Regge trajectory is exceptional and (if present) it must be subtracted 
in order to obtain the equivalence implied by duality. A method for expressing 
duality in mathematical form will be described in the next section. 

6.3. The Venexiano representation 
Duality requires subtraction of any Pomeron contribution that occurs in a 

scattering amplitude. Although this contribution is quite well defined at high 
energies, it is somewhat uncertain at low energies. One can therefore obtain the 
clearest statement of duality by considering the reaction which was used in his basic 
paper by Veneziano (1968), namely, 

xx --f xo. (6.11) 

This reaction has isospin one, as does each crossed reaction. Therefore, there is no 
Pomeron contribution in any of the three channels. Furthermore, after factorizing 
out a kinematic factor there is just one scalar amplitude A(s, t ) ,  which is a function 
of the invariants s and t or of U related to s and t by 

s+ t+u  = 4m2. (6.12) 

The  three channels, in which s, t and U ,  respectively, denote the energy squared 
For simplicity we take the x and w (and later the p) to have equal masses m. 

are all the same as (6.11). T o  be specific, we include the charge; 

s channel, x+x0+x+w (6.13a) 

t channel, x-x--+xow (6.13b) 

U channel, x+ w -+ TC+ no, ( 6 . 1 3 ~ )  

The  kinematics and crossing properties from one channel to another were described 
in $3.1 and in figure 19. 

In  each of the three channels, the p meson represents an intermediate state or 
resonance. The  associated sequence of resonances on the p Regge trajectory are 
therefore symmetrically present in each channel. For the present though, we will 
proceed unsymmetrically, and initially we will ignore the resonances in the U 

channel. Then we can concentrate on obtaining duality between the s and t channels. 
At a later stage we will symmetrize to include also the U channel. 

We will consider only the p sequence of resonances for simplicity. Therefore 
in the s channel the amplitude should be expressible in terms of a sum over these 
successive resonances. 

Y A(s, t )  = c - 
rk S - S S ,  

(6.14) 
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where s, = mn2 and m, is the mass of the nth resonance on the p Regge trajectory, 
thus n = 0 gives the p meson and 

cx(mne) = 2n+ 1. (6.15) 

We make the usual linear approximation for the trajectory and take E ( S )  to be small in 

a(s) N cxo + s + iG(s). (6.16) 

At high energies, the amplitude will be dominated by the Regge pole exchange 

A(s, t )  -P( t )  @)--I. (6.17) 

The  value a(t)  - 1 replaces the usual a(t) in the asymptotic Regge form because we 
have removed a kinematic factor which is due to the spin of the o meson and which 
has an asymptotic behaviour proportional to s. 

in the t channel, which is also the p meson, thus as s - f co ,  

Figure 31 I (a )  Schematic approximations illustrating duality between resonances and Regge 
behaviour. (b)  a(s), a(t) diagram showing poles of the Veneziano form of Euler's beta 
function (6.19). Zeros are denoted by the broken lines, poles by the continuous lines 
at integer values of a(s) and a(t). 

'The idea of duality shown schematically in figure 31(a) asserts that (6.17) is 
simply the asymptotic form of the sum over resonances (6.14). Veneziano (1968) 
made the important observation that the Euler beta function has the desired pro- 
perty of giving both the forms (6.14) and (6.17) and also can be written symmetrically 
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in s and t. He therefore took as a trial scattering amplitude 

A(& t )  = B(1 - a(s), 1 - a( t ) )  (6.18) 

(6.19) 

We have omitted an arbitrary normalization constant. This function has poles at 
fixed s and at fixed t ,  

(6.20) 

for m, n = 0,1,2,  . . . . It also has lines of zeros, due to the poles in the I? function 
in the denominator, when 

2-a(s ) -a( t )  = - 1  ( I  = 0,1,2, ...). (6.21) 

These poles and zeros are illustrated in figure 31(b). Thus the beta function (6.19) 
has 

(i) poles in the s and t channels, corresponding to an exchange degenerate p 

(ii) symmetry between s and t ,  
(iii) no double poles. 

1 - a(s) = - n 1 - a(t)  = - m 

trajectory, 

The  absence of double poles follows from the fact that the zeros shown in figure 3 l ( b )  
meet the poles at their intersecting points. 

The  asymptotic behaviour of (6.19) for fixed t as s+co may be found from 
Stirling's formula 

r ( x )  N ( 2 ~ ) ' i ~  e-zxx-+. (6.22) 
This gives from (6.19), as s+m, 

~ ( a ( s ) ) ~ ( ~ ) - ~  exp ( - in-a(t)) exp (1 - a(t))  
A($, t )  r ( a ( t ) )  sin ( ~ a ( t ) )  

(6.23) 

This will have the Regge form (6.17), provided a(s) is a linear function of s, which 
is exactly the assumption (6.16). Then as s+m,  

V S Z ( ~ ) - ~  exp ( - h a (  t ) )  exp (1 - a( t ) )  
l?(a(t)) sin (na(t)) 

A($, t )  - (6.24) 

Since a(t)  has a form similar to (6.16), we obtain for the Veneziano amplitude (6.19) 
the following result (iv). 

(iv) Regge behaviour as s + m  for fixed t ,  and as t- tm for fixed s. 
We have now achieved symmetry and duality between the s and t channels. 

This can be extended to give the s, t ,  U symmetry required for the reaction (6.11) by 
taking 

A ( s , t )  = B ( l - a ( s ) , l - - a ( t ) ) + B ( l - a ( t ) ,  l - a ( U ) ) + B ( l - a ( U ) , l - a ( S ) ) .  
(6.25) 

There are of course a number of difficulties and deficiencies in this simplest 
form of Veneziano representation. Some are serious but others can be remedied. 
The  principal defects that have not yet been adequately solved are: 

(i) the amplitude is not unitary, 
(ii) it is difficult to include spin one-half particles in the representation, 

(iii) the amplitude is not unique in the sense that other beta functions can be 
added without spoiling the duality properties. 
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Advantages of the representation that have not been mentioned above include: 
(i) convenient generalizations to multiparticle processes (Bardacki and Ruegg 

(ii) applications give qualitative agreement with experimental results (Lovelace 

An example of an application of the Veneziano method is shown in figure 32, 
which compares theory (Lovelace 1968) and experiment (Anninos et al 1968) for 
the annihilation reaction 

pn -+ x+ x- x-. (6.26) 

This reaction is viewed theoretically as the decay of an isovector meson (pn) into 
three pairs. I t  may be represented by a term like (6.19). Other terms could be 

1968, Virasoro 1969a, b). 

1968, Chan 1969, Jacob 1970, Koba and Nielson 1969). 

( E ( #  f) f ( G e V f  

Figure 32. Comparison of the Veneziano model (6.19) (curved line) with the T’ T- mass 
(energy) distribution of experimental values, for the annihilation reaction, pn -+ T+ n- x-  
(theoretical curve from Lovelace 1968, experimental values from Anninos et a1 1968). 
The  vertical axis denotes the number of events observed (in a small energy interval) at a 
given energy. 

included, but it is found that this gives the reasonable agreement with experiment 
that is shown in figure 32. In  making comparison with experiment, it is necessary 
to make some ad hoc allowance for unitarity by taking E ( S )  in (6.16) to be nonzero, 
The  form of a(s) used in (6.19) to give the curve shown in figure 32 is 

a(s) = 0.48 + 0.88s + i(0.28) (s - 4p2)J’z. (6.27) 

Many other more complicated comparisons with experiment have been made. They 
yield good qualitative agreement, but it is not clear whether this is really significant 
in view of the fundamental defects noted above that necessitate ad hoc procedures 
when making comparison with experiment. 

6.4. Many  -particle production 
At relatively low energies (a few GeV) the production of particles in a collision 

is strongly influenced by resonances between the produced particles, A simple 
application of Regge theory is precluded when the energies are in a resonance region. 
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We have already discussed in $02.9 and 5.10 production processes which can be 
approximated as quasi-two-body reactions in which Regge theory becomes appro- 
priate for sufficiently high incident energies. We have also indicated in $6.3 that 
duality provides a method for extending Regge theory down into the resonance 
region by means of the Veneziano model and its extensions. 

The  applications of extensions of the Veneziano model (reviewed by Jacob 1970) 
have been concerned mainly with three-body production processes, although a 
major theoretical effort has been made to obtain a systematic treatment of many- 
body processes. The  latter has not yet been successful, for the reasons noted in 
$6.3, although some considerable progress has been made. 

The  study of many-body production processes at high energies (10 GeV to 
2000 GeV) has not yet entered the stage of detailed comparison with experiment 
where the ‘fine structure’ of theory or experiment becomes crucial (as in two-body 
and quasi-two-body Regge theory). However, there have been extensive studies of 
experimental results based on four theoretical models, namely : 

(i) A thermodynamic model (Hagedorn 1965, 1968, Hagedorn and Ranft 1968). 
This pictures the collision process as leading to a (momentum) distribution of 
decay centres (fireballs) which emit particles in a manner similar to black body 
radiation. 

(ii) The  multiperipheral model (Bertochi et a1 1962, Amati et a1 1962), which 
has a natural extension to a multi Regge model (Kibble 1963, Ter  Matirosyan 
1963, Polkinghorne 1965, Zachariasen and Zweig 1967, Zachariasen 1971, Chew and 
Pignotti 1968). We will briefly discuss this model below, it leads to some of the 
features of models (iii) and (iv) which are more intuitively based. 

(iii) Feynman’s parton model, in particular the scaling hypothesis in many- 
particle production at asymptotic energies (Feynman 1969). 

(iv) The  limiting fragmentation model of Yang and collaborators (Benecke et a1 
1969, Chou and Yang 1969) which suggests that the distribution of produced 
particles having finite momenta relative to the target (or the projectile) reaches a 
limiting form at asymptotically high energies. 

In  addition, one should mention the longitudinal phase-space picture suggested 
by Van Hove though this is primarily a method of analysis rather than a model 
(Van Hove 1969a,b). This picture and the other models for many-body production 
have been reviewed by Van Hove (1971) and by Horn (1972). The  use of Regge 
theory and the multiperipheral model in many-body production has been reviewed 
by Jacob (1971). 

The  multiperipheral model assumes that a particle production process can be 
derived from a diagram like that illustrated in figure 33. This shows the incident 
particles with momenta p ,  and p ,  interacting via a chain of Regge exchanges 
(k,, k,, ...) to produce final particles having momenta q,, q2, ..., 4%. 

As we have seen in $ 5 . 5 ,  a Regge exchange leads to a forward peak in a two- 
particle reaction. The  analogous argument applied to the multi-Regge exchange 
diagram in figure 33 leads to a strong preference towards small values for the 
exchanged momenta, This leads to small average values for the transverse momenta 
of the product particles in the final state, in agreement with the experimental results 
shown in figures 17 and 18. It also leads to small longitudinal momenta for pro- 
duced particles (pions) associated with the central part of the chain in figure 33. 
It is not yet known whether this (pionization) phenomenon is in agreement with 
experiment. 
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The mean multiplicity of the produced number of particles can be evaluated 
from the multiperipheral model using an argument due to Fubini (1963) (see also 
Horn 1972). The  n particle production cross section a, is given by the modulus 
squared of the amplitude corresponding to figure 33. Then, if g denotes the coupling 
constant, 

U, = g2" f ( S ,  . . .)# 

The total cross section is given by 

UT = 5%. 
n 

The mean number of particles produced in the reactIan is defined to be 

1 ( n )  = - no,. 
UT 

(6.28) 

(6.29) 

(6.30) 

rn - 
Figure 33. A schematic representation of a production process involving multi-Regge exchange 

that forms the basis for the multiperipheral model. 

This can be derived by formally changing the coupling constant g 2  to Ag2. From 
(6.28) and (6.29) this gives the ' A  dependent' total cross section 

UT( A) = 2 An 0%- 

Hence the average multiplicity (6.30) is given by 

(6.31) 

(6.32) 

We now assume the result of Regge theory that uT is determined by the 
Pomeranchuk-Regge trajectory a(t)  at t = 0. Withg2-tXg2, a(t)  at t = 0 will depend 
on A, say .(A). Then 

aT(A) = P(h) S"(')-' (6.33) 

where the limit as A+ 1 of .(A) is 1. Using (6.32) and (6.33) we obtain 

(n> = aln(s)+b (6.34) 

where a and b are (unknown) constants. This result on the average multiplicity in a 
high-energy collision compares well with the experimental results in figure 34, 
which shows the average charged multiplicity. The  latter has been verified (at 
machine energies up to 30 GeV) to be proportional to the total multiplicity. 
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7 -  

6 -  

A 5 -  

5 4 -  

3 -  

A formula similar to (6.34) can also be derived from the models of Feynman and 
Yang et a1 which were mentioned above. The  essential features of these models 
that lead to (6.34) can also be derived from the multiperipheral Regge model. It is 
possible that this result, like some other results in Regge theory, is due to certain 

8 c 

*t 

T 

I 1  I I 
I IO 100 

s CGeV)' 

Figure 34. The average multiplicity of charged particles produced in pp collisions. The  high- 
energy points are obtained from cosmic ray data (Jones et a1 1970). 

general features of the theory rather than the specific details of Regge models. If 
this is the case then a future task in both theory and experiment will be the identi- 
fication and isolation of these general features. In  the meantime Regge theory and 
its generalizations remain the most hopeful basis from which to develop a full 
understanding of the strong interactions of elementary particles. 
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